
An object-oriented LL(1) parser generator
Bernd Kühl and Axel-Tobias Schreiner

{Bernd.Kuehl,Axel.Schreiner}@informatik.uni-osnabrueck.de
Computer Science, University of Osnabrück, Germany

Abstract

This paper describes oops, an object-oriented parser generator implemented in Java [1]. Oops takes a
grammar written in EBNF, checks that it is indeed LL(1), i.e., suitable for recursive descent parsing, and
produces a parser as a set of serialized objects. A scanner must be provided and classes satisfying certain
interfaces can be implemented which the parser uses to build parse trees.

The paper discusses the ideas behind oops — which are not specific to an implementation in Java — and
shows the advantages of an object-oriented approach to grammar verification and parsing.

Keywords: compiler, parser, object-orientation

Objects for analysis and execution

A compiler converts a program written in a language into a tree which can be interpreted or synthesized for
some target machine. Execution of the result, tree or machine code, performs the task for which the pro-
gram was written.

This idea can be applied to grammars and parsers. A parser generator converts a grammar written in a
meta-language into a tree. Execution of such a tree should perform what the grammar is intended for, i.e.,
language recognition. From this point of view the tree constitutes a parser.

There must be semantic analysis in both cases. If a program is converted into a tree, semantic analysis
checks the validity of the program. If a grammar is converted into a tree, semantic analysis must be con-
cerned with the suitability of the grammar for language recognition.

program
conforming to

grammar

grammar
processor

Send run() to elicit the
effect of the program

tree of
persistent
objects
representing
program

grammar
conforming to

EBNF

EBNF
processor

Send run() to elicit the effect of the
grammar: language recognition

tree of
persistent
objects
representing
grammar

An object-oriented approach builds both trees from objects. Semantic analysis amounts to sending a mes-
sage to the root of a tree asking it to check it's validity. The root will in turn activate it's subtrees and so on,
i.e., semantic analysis is now a localized problem applied to each class of tree node.

Executing a tree can also be accomplished by messaging the root of the tree. The root will enlist the help of
it's subtrees and thus execution is similarly distributed over the tree node classes.

Mapping a grammar to a set of objects

A context-free grammar consists of nonterminals, terminals, a nonterminal start symbol, and rules describ-
ing how a nonterminal produces various sequences consisting of terminals and nonterminals. Using a typ-
ical variant of BNF, a rule looks like this:

identifier : letter | identifier letter | identifier number

Recursion is used to express iteration. So-called Extended BNF provides notations to express this more

directly.1

identifier : letter [{ letter | number }]

This notation eliminates most recursions and the need for empty alternatives.

Turning now from EBNF to objects, the grammar is represented as a Parser object containing a list of
rules.

Each rule is represented as a Rule object connecting the nonterminal on the left hand side to the alterna-
tive symbol sequences on the right hand side.

The right hand side of each rule is a single object, i.e., a sequence of symbols is contained in a Seq object.
Alternatives are collected in an Alt object. For the iterations we use Some and Opt objects and the special
case of nesting Some and Opt as above is addressed by Many.

A nonterminal on the right hand side is represented as an Id object that references the rule for the nonter-
minal. A terminal is represented as a Lit object literally representing a operator or keyword such as <= or
begin. User-definable terminals such as names or various numbers are represented as Token objects.

Using indentation to express node containment, the example above results in the following tree:

Parser
 Rule identifier
 Seq
 Id letter
 Many
 Alt
 Id letter
 Id number

Executing a Parser

A parser takes a string of terminals and decides if it is a sentence of a grammar, i.e., if the start symbol of
the grammar produces the terminal string.

One way to decide is by using recursive descent. In object oriented terms the Parser asks the Rule for
the start symbol and it asks it's right-hand side. An Alt object asks the alternatives; a Seq asks each con-
stituent in turn; Some, Opt, and Many manage repeated queries; an Id invokes it's Rule; and a Token or
a Lit, finally, checks the input. Each class, therefore, implements a parse()-Method and the methods
call each other recursive-descent-style.

1. The representations vary. We prefer braces {} for something that occurs once or more often and brack-
ets [] for something that is optional. Nesting the two, something can occur zero or more times.

It helps if this is done in a very deterministic fashion: Alt should only ask the appropriate alternative; Some
and the others should only iterate if necessary.

The key to determinism are lookahead sets. In object-oriented terms, each object knows it's lookahead set
of terminal symbols. The lookahead set contains all input symbols of which one must be present for the
object to succeed in recognizing a sentence. We will show below, how lookahead sets are computed.

Given the lookahead sets, each object asked to participate in recognition can easily decide if it has a
chance to succeed: the current input symbol must be in it's lookahead. Rule only starts, if the input fits.
Alt can deterministically select a single alternative if the lookaheads of it's constituents differ. Seq simply
asks one object after another to participate. Id defers to it's Rule and Token or Lit, after all, must match
the input and advance to the next symbol.

Iterations are curtailed by lookahead, too; e.g., Some requires the current input to match the lookahead of
it's constitutent at least once. All iterators stop iterating, once the input does not match anymore, or not at
all.

Suitable grammars

A parser decides if an input string is a sentence of a grammar by deriving the string from the start symbol
of the grammar, i.e., by building a parse tree with the start symbol as the root and the input symbols as the
leaves. Usually meaning is associated with this tree; therefore, compiler makers require a grammar to be
unambiguous, i.e., to produce but a single tree for each sentence.

In general it is difficult to decide if a grammar is unambiguous. However, we saw above that the lookahead
sets are the key to determinism and therefore absence of ambiguity. The approach can backfire, however.
Consider

bits : { 0 | 1 } (0 | 1)

where the parentheses are used for precedence. bits are strings of two or more zeroes or ones. The right
hand side of the Rule for bits is as follows, with the interesting lookaheads listed in the middle:

Some clearly will absorb as many 0 and 1 inputs as there are, with none left for the subsequent (not constit-
uent!) Alt.

While this grammar is unambiguous, it is clearly not suitable for the parsing technique described above.
For a valid parser, we need to check the follow sets, too. In object-oriented terms, the follow set contains all
those input symbols one of which must be present after the input sequence recognized by the object. The
follow sets are listed at right above.

Lookahead sets

The rules for computing lookahead and follow sets can be derived mostly by considering syntax graphs as
introduced by Wirth. Using a notation inspired by Nassi-Shneiderman's flowcharts[2] the interesting tree
nodes look as follows:

seq 0 1 [empty]
 some 0 1 0 1
 alt 0 1 0 1
 lit 0 0 0 1
 lit 1 1 0 1
 alt 0 1 [empty]
 lit 0 0 [empty]
 lit 1 1 [empty]

 Some Alt Opt Many Seq

Clearly, Some takes it's lookahead set from it's constituent. Alt's lookahead is the union of the lookaheads
of it's alternatives. Opt need not accept any input; therefore, it must add an empty input to the lookahead of
it's constituent. Many is the combination of Some and Opt. Finally, Seq takes the lookahead of it's first
entry and adds the lookaheads of subsequent entries, as long as the empty input is acceptable.

Lit and Token's lookahead sets are trivial, they simply contain the expected input symbol. These sets
kick off the rest of the computation.

Follow sets

 Some Alt Opt Many Seq

Some, Alt, Opt, and Many pass their follow set to their constituents. Seq passes it's follow set to the last
entry. From then on, the lookahead set of an entry is the follow set of the previous entry; however, if a loo-
kahead includes the empty input, the follow set is also passed to the previous entry.

On the whole, computing lookaheads is easy because they eventually stem from the terminals, i.e., from
Lit and Token, a Rule gets it's lookahead from the right hand side, and an Id refers to it's Rule.

When computing follow sets, the Rule for the grammar's start symbol initially passes a follow set just con-
taining an end of file to it's right hand side to start the ball rolling. When an Id receives a follow set, it
hands it to it's Rule. The process is repeated as long as the follow set of any Rule increases; it must ter-
minate because there is only a finite number of terminal symbols. Note that a follow set cannot contain an
empty input but one or more follow sets will contain end of file. While computing follow sets is not quite as
straightforward as computing lookaheads, it is a consequence of needing the transitive closure of the
immediate follow relation defined by the right hand side of rules which is usually computed with Warshall's
algorithm.

Checking a grammar

Obviously, a Some is in trouble if it's lookahead set and it's follow set have a non-empty intersection — just
consider the syntax graphs:

text text

Ø

texttext

Ø
Ø

text text texttext
Ø

 Some Alt Opt Many Seq

Once Some's constituent has been satisfied, the parser checks the next input symbol to decide if it should
try the constitutent again or finish with Some. This can only be decided if the two sets have no elements in
common.

For an Alt, the alternatives' lookaheads must be pairwise disjoint. Thus, at most one alternative can admit
the empty input; if it does, Alt's total lookahead must be disjoint from it's follow set. Because Opt and
Many accept the emtpy input, their lookaheads cannot have elements in common with their follow sets,
either.

The remaining building blocks, Seq, Id, Token, and Lit, impose no restrictions.

In order to be suitable for the parsing technique described above, a grammar has to satisfy the following
three properties: starting with the right hand side of the rule for the start symbol, all rules must be reach-
able; the constituents must satisfy the restrictions outlined above; and there must not be an infinite recur-
sion. A grammar is checked by asking it's start Rule to check it's right hand side and all classes implement
the necessary check method. Infinite recursion and reachability of all rules are detected by marking algo-
rithms.

The elegance of the object-oriented approach is threefold: Computing lookahead and follow sets is a local,
simple algorithm for each class. The lookahead sets can be carried over to execution as described previ-
ously. The follow sets can be useful for an automated error recovery technique that will be described in
another paper.

Using oops

Oops takes a grammar specified in EBNF and represents it as a collection of Rule objects containing right
hand sides modeled using the other classes introduced above. The objects are then asked to check if the
grammar is suitable for recognition; as a side effect they will then contain the lookahead and follow sets.
The result is serialized.

Once the objects are revived, they can be used to parse a sentence over the grammar: The starting Rule
is given a scanner representing input symbols as singletons and it asks it's right hand side to parse.
Because each object contains it's lookahead set, it is quite simple to check if the input matches. At the end,
the starting Rule checks with the scanner if the end of the input has indeed been reached.

While this may be very satisfying from a theoretical standpoint, the user usually expects the parser to
return a bit more than a simple true or false. Therefore, oops provides interfaces for building parse trees
or executing other actions.

While a Rule matches something, a subtree of the eventual parse tree can be built: The Rule creates a
Goal object and passes it to the right hand side when the parse is started and the Goal is handed off to
each parser object. If a Lit or Token object is successful, it informs the Goal object using a shift()
method which may choose to add information to a tree. Once the end of a Rule is reached, the Rule itself
sends reduce() to the Goal signalling completion. The result returned by reduce() is sent with
shift() to the Goal object for which the Rule was activated.

Goal is an interface and we provide a GoalAdapter and a GoalDebugger as default implementations.
Both simply return the object which the first Token or Rule passes to them; GoalDebugger additionally

text text

Ø

texttext

Ø

writes a trace. While this alone does not produce a parse tree, the trace does, however, suffice to debug a
grammar.

GoalAdapter is supposed to be extended. When compiling the parser, oops checks for each Rule if it
can find a class based on the name of the Rule's nonterminal. An instance of this class is created when-
ever the Rule needs another Goal object. If a Rule-specific class cannot be found, GoalAdapter or
some other default class is used. A trivial tree builder extends GoalAdapter and overwrites reduce()
and shift() in some critical places to construct a more useful tree. Continuing with the previous exam-
ple:

identifier : letter [{ letter | number }]

If the parser really is to assemble an identifier, a class identifier must be implemented:

public class identifier extends GoalAdapter {
 StringBuffer result = new StringBuffer();
 public void shift (Token sender, Object node) {
 if (node != null)
 result.append(node); // a Character from the scanner
 }
 public Object reduce () {
 return result.toString();
 }
}

letter and number must be recognized as Token objects by a scanner. Token denotes a category of
inputs; therefore, the scanner would pass a Character object to describe the actual input symbol. iden-
tifier receives the Token and can store the accompanying object as recognition proceeds along the
right hand side of the rule — this is equivalent to yacc's value stack. Once the rule is completed, identi-
fier is asked to return an object corresponding to the nonterminal, to which the right hand side is now
reduced. The object is handed off to the superior Goal using another shift() method. Consider:

identifiers: { identifier "\n" } ;

The class identifiers could be implemented as follows:

public class identifiers extends GoalAdapter {
 public void shift (Goal sender, Object node) {
 if (node != null)
 System.out.println("\tid: "+node);
 }
 public void shift (Lit sender) {
 // ignore \n
 }
}

In this case reduce() returns null by default — the parser displays the identifier names and ignores the
line separators which the scanner delivers as Lit objects to the parser.

Goal can actually be simplified. If a Rule-specific class implements the Reduce interface, the Rule cre-
ates a GoalReducer object which collects all information arriving with any shift() method. Once
reduce() is finally sent to the GoalReducer it passes an array with the collected information to the
reduce() method in the Reduce interface implemented by the Rule-specific class. Reduce is helpful for
quick and dirty implementations of abstract parse trees.

Implementation issues

Oops is implemented in Java; however, the ideas do not rely on Java for the most part. Grammar and tree
building actions are completely separate. The grammar is specified using some variant of EBNF; it remains
unchanged no matter which language oops is implemented in. Actions are implemented as shift() and

reduce() methods of Goal or Reduce classes. This in turn is completely free of artifacts associated with
the grammar representation.

The implementation language should provide for serialization. If it does not, oops will have to reread the
grammar, first to send a verification message, and later to send parse messages. At least the lookaheads
must be computed in both cases.

If the implementation language does not provide for interfaces, the action classes end up with a common
ancestor and the scanner, too, must be derived from a class prescribed by oops.

Needless to say, oops is implemented in oops. We used jay, our Java-targeted version of yacc [3, 4], for the
initial bootstrap.

Conclusion

Oops was patterned after Wirth's generalparser, a grammar graph traversal program designed to illustrate
how language recognition is accomplished [5]. If implemented in an object-oriented language, the graph
nodes are objects and traversal can be delegated to methods directly associated with the nodes. Wirth's
generalparser accepts an arbitrary grammar — it is up to the user to supply a suitable grammar so that the
traversal works out.

A recent paper in SIGPLAN Notices [6] reports on systematically building a recursive descent parser by
hand from a grammar specified in Greibach Normal Form [7]. While this form ensures that each rule starts
with a terminal symbol and thus precludes left recursion, potential ambiguities in the grammar must be
dealt with each time when the parser is executed.

Oops, like generalparser, generates a parser mechanically. Oops, however, rejects an unsuitable grammar
because it is a natural question to ask our graph nodes to verify the suitability of their arrangement.

Oops naturally leads to the discovery of the parsing and checking algorithms which turn out to be localized
to the classes making up the graph nodes. Object orientation results in a divide and conquer approach to
grammar verification and parsing.

Verification requires the computation of the lookahead and follow sets. Divide and conquer means that
each class only needs to determine it's own and this can be done mostly by direct inspection, i.e., the algo-
rithms can easily be ‘‘discovered’’ in a lecture situation. Even the transitive closure required for the follow
sets can be discovered. After all, a Rule must import it's follow set from it's successor, and as we discover
more follow situations within Seq, we have to iterate the computation for the Rule objects.

Objects encapsulate state, in our case, each node knows it's lookahead and follow set as part of the verifi-
cation process. Oops reuses this information during parsing, and this, too, can be ‘‘discovered’’. Lookahead
sets control the direction of the traversal for parsing and follow sets can come in handy when there is an
input error to decide how to continue parsing. The localized, object-oriented approach closely integrates
verification and parsing and provides insight into both algorithms.

Oops requires a grammar to be LL(1) and as such does not solve the dangling else problem. Verification
need not be so strict, however, and it is a simple, localized exercise to change verification to deal with this
kind of conflict.

Parser generators mostly suffer from a rather baroque input syntax: grammar patterns have to be inter-
mixed with programming language statements to define actions which take place if the patterns are
matched. Oops completely separates the two: a grammar is specified using only EBNF and the actions are
methods of classes matched by nonterminal names and implementing the Goal or Reduce interfaces; no
special syntax is required for the actions or to match classes to nonterminals. In that respect, oops is
implementation-language-independent. Different actions can be attached to the same grammar simply by
selecting different libraries when the parser is started.

Yacc uses BNF to clearly associate a reduce operation and action with a nonterminal. BNF needs recur-
sion to express iteration and left recursion precludes the use of recursive descent for recognition.

Recursive descent recognizers like oops and JavaCC [8] use EBNF to express a grammar because EBNF
permits iteration and helps to avoid left recursion. EBNF, however, has a significant drawback: there is no
easy way to extend yacc's syntax $i to symbols shifted several times around a loop, i.e., if grammar and
actions are mixed in the same source, the actions will have to be embedded inside the iterations in EBNF.

Goal overcomes this drawback: a Goal object is created when a Rule is entered. This object is informed
by a shift-message whenever a symbol required by the Rule is matched; therefore, it has a sequential
view of the matching process even through iterations.

Oops reuses many components. There is one set of building blocks for all generated parsers. Goal-
Adapter is a generic building block for parse trees so that a grammar can be checked out immediately.
Further building blocks for parse trees can be provided if grammars stick to fairly standard nonterminal
names — in fact, we are connecting a ``compiler kit'' to oops, i.e., a library for parse trees that includes rep-
resentations for data types, variables, control structures, semantic checks, and interpreter generation.

References

[1] Homepage oops: http://www.informatik.uni-osnabrueck.de/bernd/oops/

[2] Nassi, I., Shneiderman, B., Flowchart techniques for structured programming, SIGPLAN Notices, ACM
August 1973.

[3] Kühl, B., Schreiner, A.-T., jay – Compiler bauen mit yacc und Java, iX 10/99, Heise Verlag, Germany.

[4] Homepage jay: http://www.informatik.uni-osnabrueck.de/bernd/jay/

[5] Wirth, N., Compilerbau, 3. Auflage, Teubner, 1984

[6] Davis, M. S., An object-oriented approach to constructing recursive descent parsers, SIGPLAN
Notices, ACM February 2000.

[7] Greibach, S., A new normal form theorem for context-free phrase structure grammars, JACM January
12 (1) 1965.

[8] Homepages JavaCC and Metamata Parse: http://www.metamata.com/.

