
Objects for Lexical Analysis

Bernd Kühl Axel-Tobias Schreiner
bernd@informatik.uni-osnabrueck.de ats@cs.rit.edu

Computer Science, University of Department of Computer Science,
Osnabrück, Germany Rochester Institute of Technology, USA

Abstract

This paper presents a new idea for lexical analysis: lolo (language-oriented lexer
objects) is strictly based on the object orientation paradigm. We introduce the idea
behind the system, describe the implementation, and compare it to the
conventional approach using lex[1] or flex[2].

lolo[3] extracts symbols from a sequence of input characters belonging to the ASCII
or Unicode sets. lolo scanners can be extended without access to the source code:
symbol recognizers can be derived by inheritance and an executing scanner can
be reconfigured for different contexts. Recognizer actions are represented by
objects which may be replaced at any time. Recognizers need not be based on
finite state automata; therefore, lolo can recognize symbols that systems like lex
cannot recognize directly.

The idea

Conventional tools for lexical analysis, such as lex, partition text based on patterns,
i.e., on regular expressions. Patterns are associated with program statements to be
executed upon recognition.

Pattern syntax is rather cryptic and difficult for novices to understand. To
understand a complicated older pattern (or even someone else's) usually requires
considerable experience. As an example, here is a regular expression for a
comment based on C conventions:

"/*"([^*]|"*"+[^/*])*"*"+"/"

A complicated regular expression is error prone and requires extensive testing.

Tools such as lex process many pattern-action pairs and generate source code for
a scanner to perform the lexical analysis described by the pattern-action pairs. The
scanner can only be used after further compilation. The entire development cycle —
editing pattern-action pairs, generating source code, and compilation — must be
repeated to correct, change, or extend the scanner.

Some real-world recognition problems are difficult or even impossible to solve
using regular expressions, e.g., nested comments.

These observations motivated a new and simpler approach:

A scanner is modeled as a competition of objects, each concerned with recognizing
a single symbol. A room filled with such objects obtains input and sends one input
character after another to the objects (push principle). An object leaves the room
once it cannot deal with a character. The winner is the last object to leave the room;
it has recognized the longest possible character sequence. If several objects
together are last to leave, there is an ambiguity which can be resolved in favour of
the first object to enter the room.

This is a simple approach for the end user. There is a class library with typical,
configurable symbol recognizers such as different numerical literals, character sets
and sequences, comments, white space, etc. For good measure one could even
include a class with regular expressions for symbol recognition. The user just
assembles objects in the room and does not have to worry about the recognition
process carried out by the individual objects.

Objects encapsulate arbitrary state; therefore, these objects can be more powerful
recognizers than finite state automata. This permits simple recognition of things like
nested comments. While the individual recognizers are small, problem-specific
automata, the room combines them into a larger, non-deterministic system.

lex-like tools first build a non-deterministic, finite state automaton from text patterns:
each input causes a transition from a state to one or more other states. Sets of new
states are then used as states of an equivalent, much larger, deterministic
automaton, which essentially traces through all possibilities of the original
automaton in parallel. The new automaton must be reduced and compiled,
however.

lolo avoids this because the recognizers save the states locally and the competition
essentially operates them in parallel. While such a system is simple to use and
extend, even based on previously compiled code, we found that it incurrs a
significant performance penalty. Luckily, for the typical problem of analyzing
programming languages the first character of a symbol tends to be significant, e.g.,
a digit starts a number, a quote starts a string, a letter starts a reserved word or
identifier (which are later differentiated by the symbol table), and special characters
tend to be used singly or in pairs, etc. Thus, the outcome of the competition can
usually be decided by looking up the winning recognizer in a table indexed by one
character and this recognizer collects as many more characters as it can (pull
principle). A special multiplexing recognizer can be entered in the table as a proxy
if the first character should not be sufficient to decide part of the competition.

Partitioning a text does not make much sense unless there are actions to deal with
the pieces. A recognizer that wins the competition usually knows another object
that is then asked to deal with the symbol. Only the interface between the

recognizer and the action object is defined; the action object must be supplied by
the user and it can be replaced at any time.

We will first present the implementation of the system, as a background to
discussing the pros and cons of the technique.

Implementation

lolo is based on the collection classes introduced with version 1.2 of Sun's Java
Development Kit. A scanner cannot be used simultaneously by parallel threads.

The package lolo provides a framework for the competition:

The class Input buffers characters from a Reader and manages the currently
recognized character sequence. An Input serves a Scanner. A Scanner calls
setStartSymbol() to let Input note the beginning of a new symbol in the buffer.
next() returns a character from the buffer and moves the current position. mark()
asks Input to flag a position in the buffer so that pushBackToMarked() can reset the
current position.

A Scanner manages a recognizer table, is constructed from Scan objects, i.e.,
recognizers, and has methods to add or remove them. In response to pack() or just
before the first scan(), a Scanner builds it's recognizer table by sending each index
character to each recognizer and inserting them directly into the table or into Mux
objects as required. scan() sends an Input to a Scanner and returns the winning
Scan object or null if Input reaches end of file. Input is responsible for silently
maintaining and filling a sufficiently large buffer.

Scan is the abstract base class for all recognizers. If scan() is sent to a Scanner, it
selects the winning recognizer from it's table and pushes characters from Input to
this Scan by calling nextChar(). The resulting Scan.State reflects in a boolean value
found, if this character could complete a symbol and in a boolean value more, if
more characters can be added to the symbol. Scanner uses Scan.State to mark the
Input and terminate pushing characters.

A Scan object can be marked to be ignored. If it is not, and if it wins the competition,
Scanner sends action() with an Input buffer segment containing the recognized
character sequence. Scan delegates this message to an object supplied by the user
which must implement Scan.Action. A recognizer is reset() before it is used again.

The package lolo.scans contains recognizers for typical programming language
symbols: identifiers, numbers, strings, comments, whitespace, etc. The user can
use these, extend them, or provide completely new ones. Additionally, lolo.Mux
can be used to bundle several recognizers into a single one.

Examples

The user interacts with lolo in a few steps: first, a Scanner is constructed from a set
of recognizers, which might include extended or even new ones; second, action
objects can be created and connected to the recognizers; third, the Scanner table
can be packed and the Scanner serialized to be used later. Eventually, an Input is
constructed from a Reader and a Scanner is instructed with scan() to analyze it,
which results in calls to the action objects.

Here is how some recognizers are implemented:

Set objects recognize a single character that does or does not belong to a set of
characters:

public class Set extends Scan {
protected final String set; protected final boolean inside;

public Set(String set, boolean inside) {
this.set = set; this.inside = inside;

}

public void reset() {}

public State nextChar(char ch) {
return stateObject.set(
false, // more characters ?
inside ? // found symbol ?

set.indexOf(ch) >= 0 :
set.indexOf(ch) < 0);

}
}

stateObject is defined in Scan as a convenience. For Set it marks that no further
characters are needed and indexOf() checks whether Set found a symbol.

Even this simple class can be extended: a Char object recognizes a single specific
character or a single arbitrary character:

public class Char extends Set {
public Char() { super("", false); } // match any

 public Char(char ch) { super(ch+"", true); } // match ch
}

SetMN is similar to Set: it recognizes between m and n characters which do or do not
belong to a set:

public class SetMN extends Set {
protected final int m, n;
public SetMN(String set, boolean inside, int m, int n) {

super(set, inside);
this.m = m; this.n = n;

}

protected transient int jog;

public void reset() { jog = 0; }

public State nextChar(char ch) {
jog ++;
boolean b = inside ?

set.indexOf(ch) >= 0 :
set.indexOf(ch) < 0;

return stateObject.set(
b && jog < n, // more characters ?
b && jog >= m // found symbol ?

);
}

}

Another class, Int, recognizes unsigned integer numbers. Int is derived from
SetMN. One Int object recognizes at least a single digit:

public class Int extends SetMN {
public Int() { this(Integer.MAX_VALUE); }
public Int(int maxDigits) {

super("0123456789", true, 1, maxDigits);
}

}

Word objects recognize character sequences:

public class Word extends Scan {
protected final String word;
protected transient int index;

public Word(String word) { this.word = word; }

public void reset() { index = 0; }

public State nextChar(char ch) {

boolean b = ch == word.charAt(index++);
return stateObject.set(

b && index < word.length(), // more characters ?
b && index == word.length() // found symbol ?

);
}

}

Serialization

Scanner and Scan implement the interface Serializable. Scan serializes an action
object if it is Serializable. The classes implemented thus far ensure that only
necessary instance variables, such as the character sequence but not index in
Word, are serialized.

A Scanner can be stored as a collection of serialized objects so that it's table is
already packed whenever the scanner is read in to be executed. Conceivably,
different scanners might even share the same serialized objects.

Analysis

It seems that lolo's object oriented approach to scanner construction offers
numerous advantages and has but a few drawbacks.

If lolo.scans does not provide a suitable subclass of Scan one has to be
implemented. This is likely to take longer than just adding a regular expression to a
lex program. However, given a reasonable recognizer library, adding from scratch
should hardly be necessary.

The user has to understand which subclasses of Scan are available. Learning how
to use a tool like lex and the subtleties of regular expressions is likely to take
longer.

An lolo scanner needs the class library at runtime, a lex scanner technically is a
stand-alone piece of software. However, the class libraries are simply another
system archive that must be added to the class path, or they could be installed as a
Java extension.

Performance issues are the only drawback. A lex scanner is a deterministic finite
state automaton described by a state table. An lolo scanner using Mux is not
deterministic and follows a few possibilities in parallel. Fortunately, this scenario is
quite unlikely when programming language sources are analyzed using suitable
recognizers. Unlike lex, lolo needs to reset() recognizers before they can be
started again.

JLex[4,5] implements a lex scanner in Java. Looking for typical symbols in a Java
source file with 2.16 MB on different machines and on different operating systems
took from1.46 to 2.37 times longer using lolo than using JLex. If an action was
included to print the recognized symbols to standard output it toke only 1.00 - 1.19
times longer.

lolo's object oriented approach has a lot of advantages and some additional
features. It is certainly more intuitive to be used with object-oriented languages
such as Java, Objective C or C++.

Scanner and Input are tied very loosely. A Scanner can be called with a different
Input for each symbol, and the scanner table could even be changed right before a
symbol is scanned. It is cheaper, however, to simply add the same recognizers to
different Scanner objects to model different scanning situations. This corresponds
to defining states and adding new regular expressions to a lex table; however, for
lex it requires a complete development cycle — edit, preprocess, compile — before
the revised scanner can be used.

Action objects can be changed on the fly. A lex action would have to be explicitly
based on an object reference to provide the same flexibility.

The class library contains simple but powerful recognizer classes. For lex one can
only provide a cookbook of regular expressions which are necessarily cryptic and
not necessarily copied correctly. The classes, however, can be debugged once and
for all.

Library classes can be reused between scanners, regular expressions have to be
copied manually.

A vendor can provide it's own class library for lolo. No sources are required to use
and extend a class library. Regular expressions can only be sold as sources.

Subclassing can be used to specialize existing classes such as Char. Rather than
declaring the first longest match the winner, a subclass of Mux could decide on a
different approach to resolving ambiguity. This is not possible for lex.

Input uses Unicode characters, a Scanner table can be based on Unicode or ASCII.
If JLex is forced to use Unicode it takes much longer to create the scanner;
moreover, it is at least difficult to write patterns involving non-ASCII characters.

Scan and Scanner objects are serializable. This provides a very cheap way to reuse
the same scanner objects for different projects and even on different platforms —
no recompilation of the scanner is required.

Objects encapsulate state; therefore, Scan objects can be more powerful
recognizers than plain finite state automata, e.g. the recognition of nested
comments.

Conclusion

lolo scanners are useful for integration with parsers generated by systems like
oops[6] or jay[7,8]. (oops is a strictly object-oriented parser generator which we
implemented in Java, jay is our port of yacc for Java.)

We think that lolo provides many advantages over purely regular expression based
scanners.There is a small performance penalty, but it is justified by flexibility, a
shorter development cycle and more features. There is already a library of
recognizers for most typical symbol patterns. Some of these recognizers are more
powerful than regular expressions.

To summarize, lolo is in it's own class when it comes to lexical analysis.

References

[1] lex [Lesk 1975] M. E. Lesk, Lex - a lexical analyzer generator, Tech. Rep.
Computing Science, Technical Report 39, Bell Laboratories, 1975.

[2] V. Paxson, Flex - Fast lexical analyzer generator, Lawrence Berkeley
Laboratory, ftp://ftp.ee.lbl.gov/flex-2.5.4.tar.gz, 1995.

[3] Homepage lolo:
http://www.inf.uos.de/bernd/lolo

[4] Homepage JLex:
http://www.cs.princeton.edu/~appel/modern/java/JLex/

[5] Andrew W. Appel, Modern compiler implementation in Java, Cambridge
University Press, 1997.

[6] Homepage oops:
http://www.inf.uos.de/oops/

[7] jay -- Compiler bauen mit yacc und Java, iX 10/99, Heise Verlag, Germany.

[8] Homepage jay:
http://www.inf.uos.de/jay/

[9] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers -- Principles,
Techniques and Tools, Bell Laboratories, 1986/87.

