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Extended Abstract

 

A compiler takes a program in a source language, creates some internal representation while 
checking the syntax of the program, performs semantic checks, and finally generates some-
thing that can be executed to produce the intended effect of the program.

The obvious candidate for object technology in a compiler is the symbol table:  a mapping 
from user-defined names to their properties as expressed in the program.  It turns out how-
ever, that compiler implementation can benefit from object technology in many more areas.

If  the internal representation is a tree of objects, semantic checking and generation can be 
accomplished by sending a message to these objects or by visiting each object.  If the result of 
generation is a set of persistent objects, program execution can consist of sending a message 
to a distinguished object in this set.

Compilers are usually made with tools such as parser and lexical analysis generators.  A 
parser-generator takes a grammar, specified in a language such as 

 

BNF

 

 or 

 

EBNF

 

, checks it,  
and constructs a representation (the parser) which will execute semantic actions as phrases 
over the grammar are recognized.  If the parser consists of a set of persistent objects, check-
ing the grammar is accomplished by sending a message to the objects.  Similarly, recognizing 
a program amounts to a message to the start symbol of the grammar.  Goal objects are then 
created to represent the phrases to be recognized and the user actions are defined as meth-
ods for the goals which are called from the parsing objects. 

The presentation will discuss existing Java implementations of these ideas:  

 

oops

 

, a parser-
generator based on 

 

EBNF

 

 and objects; the compiler kit, a class library for implementing parse 
trees and interpreters for typical programming language constructs; and 

 

jag

 

, an object-based 
tool for tree traversal, helpful in debugging and classical code generation.

 

Introduction

 

This paper summarizes our experiences how compiler construction benefits from object-ori-
ented programming techniques.  We have gained them in several projects and used them to 
great advantage in two courses on compiler construction with Objective C and Java [1].

It turns out that 

 

OOP

 

 can be applied productively in every phase of a compiler implementation 
and it delivers the expected benefits:  

 

objects

 

 enforce information hiding and state encapsula-
tion, 

 

methods

 

 help to develop by 

 

divide and conquer, 

 

all work is carried out by 

 

messages

 

 
which can be debugged by instrumenting their methods.  Most importantly, 

 

classes

 

 encourage 
code reuse between projects and 

 

inheritance

 

 allows code reuse within a project and modifica-
tions from one project to another.  As an added benefit, modern 

 

class libraries

 

 contain many 
pre-fabricated algorithms and data structures.
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The diagram shows the major components of a typical compiler:  

 

lex

 

 collates source charac-
ters into words.  

 

symtab

 

 manages a table mapping these words to symbol descriptions which 
are passed around during the rest of the compilation process.  

 

syn

 

 checks the symbol 
sequence against a grammar and usually constructs a tree representing the source.  

 

sem

 

 
checks the tree for semantic correctness and might modify it to account for implicit operations.  
Finally, 

 

gen

 

 produces an image of the source that can be executed in some 

 

run

 

 environment.

The rest of this paper tours these components and discusses how object-orientation can be 
applied in their implementation and what benefits we found.

 

Symbol Table

 

symtab

 

 manages a container for descriptions of mostly user-defined symbols:  

 

lex

 

 assembles 
a word form the source and hands it as a key to 

 

symtab

 

 to locate a description or create a new 
one.  The lookup happens once per word of the source:  from this point on the description is 
passed along by reference.  Other parts of the compiler query the description or contribute 
more information.

Symbol table and descriptions are obvious candidates for 

 

OOP

 

 within a compiler:  the table is 
a container object where each description object is held.  The descriptions share at least the 
ability to be located by key.  If a base class is used to hold the key, inheritance helps to encap-
sulate and share the lookup mechanism while keeping it separate from the information consti-
tuting the actual description.  Depending on the implementation language, it is highly likely 
that an existing class library provides a suitable container, an efficient lookup mechanism, and 
perhaps even value representations for some of the description information.

 

Parse Tree

 

Given an excerpt from a typical grammar:

 

sum:     product | sum ’+’ product
product: term | product ’*’ term
term:    identifier | literal

 

Then 

 

x + 10

 

 is a sentence for which the following trees can be built:

The leaves of both trees are input symbols, other nodes represent grammar phrases.  An 
abstract syntax tree contains a node for each recognized nonterminal symbol and the children 
correspond to the symbols in a phrase for the nonterminal symbol; parser generator tools 
such as 

 

JavaCC

 

 [2] often produce an abstract syntax tree automatically.  A parse tree is a 

lex syn gen

symtab sem run

source symbols tree image

table

sum

product

sum

+

product term

term int: 10

id: x

abstract syntax tree

+

id: x

int: 10

parse tree
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pruned version of the abstract syntax tree; while it must be built more or less by hand during 
syntax analysis, it can be designed to be much more suitable for the tree traversals constitut-
ing the remaining phases of the compilation process.

Once the tree nodes are objects of classes specific to the grammar phrases, the rest of the 
compilation is carried out by methods in these classes, i.e., there is an automatic 

 

divide and 
conquer

 

 imposed for semantic analysis, etc.  Inheritance further simplifies the implementation, 
e.g., there is little difference in checking all six relational operators or in generating code for 
some commutative operators and different value types.

For our courses we have implemented an extensible 

 

compiler kit

 

 (class library) as a reusable 
universal back end.  Syntax analyzers for different languages build parse trees using these 
classes and the compiler kit does everything else:  it performs semantic analysis and gener-
ates a persistent, executable tree as an image.  The Java version of the kit was carefully 
designed so that semantic analysis can be modified by inheriting from and overwriting classes 
in the kit.  Data type operations can be restricted or extended, new data types can be added, 
and type mixing rules can be adapted.  The Objective C version of the kit included code gen-
eration into Holub’s C-code [3], an assembler-like coding style for C emulating a fictitious 
machine architecture.

 

OOP

 

 opens the possibility to implement the expression part of a language by selecting from 
the compiler kit’s data types (or adding one’s own) and building a parse tree using these 
classes.  The drawback is that there are many classes and many, mostly small methods, but 
the advantage is a very significant gain in reusability.  The following sections discuss some 
details.

 

Execution

 

Using 

 

OOP

 

 a compiler can transform a program source into a tree of persistent objects as an 
image.  Execution is accomplished by sending a message to the root node of that tree which 
results in partial traversal as the message is passed along the tree.

Specifically in Java it is very simple to make objects persistent.  This results in a cheap, plat-
form-independent image format and images can be executed wherever a Java machine is 
available.  Moreover, the execution message can be reused in the compiler, e.g., when con-
stant expressions need to be evaluated or expressions should be partially folded.  This is a 
significant advantage as it ensures that identical mechanisms are used for evaluation during 
compilation and execution.

 

Semantic Analysis

 

Semantic analysis decides if a syntactically acceptable program is meaningful.  For a large 
part it is concerned with the interaction of various data types in expressions:  during a post-
order traversal of the parse tree, result types are computed for each part of an expression and 
stored in the nodes for the benefit of code generation.

Parse tree nodes are objects, their classes must implement a method to perform semantic 
checking of the node.  If necessary, the method can augment the parse tree with conversion 
nodes.  Types are modeled as unique objects.  They have methods informing the semantic 
analysis about available operations for the type and about permissible interaction with other 
types.  Other type methods generate a simplified, persistent runtime tree which can be used 
as an interpreter or traversed for code generation.

Implementing semantic analysis as a method for the node classes automates a 

 

divide and 
conquer

 

 approach which immediately carries over to new classes.  A lot of effort in a compiler 
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implementation is spent on code to check expressions.  

 

OOP

 

 and a careful design of type 
modeling permits reusing this code in new projects.

 

Types

 

It is very important to design the type mechanism so that it can be modified, extended, or 
restricted in different projects.  The key is to let operator nodes ask type objects during seman-
tic analysis whether the intended operations are in fact available:

 

sem:
  for children: child.sem()   // sets children’s types
  for children:
    if child.type.supports(’+’, otherType):
      type = child.type.result(’+’, otherType)
      break
  if type not set: error      // impossible operation

 

This basic approach is extended to let each type decide if it is willing to convert from the other; 
if so, the type is asked to add a conversion node to the tree.

Types are represented by type objects, i.e., a type class from the compiler kit can be extended 
or restricted by subclassing and using a subclass object to represent a modified type. Thusly, 
the compiler kit can be reused to implement a language with a different set of types and mix-
ing rules.

 

Syntax Analysis

 

A compiler converts a sentence written in some language, i.e., a program, into an executable 
image.  A compiler-compiler converts a sentence written in a language like 

 

EBNF

 

, i.e., a gram-
mar, into an image which is itself a compiler.

As discussed above, an image is a tree of objects which understand a message for semantic 
analysis and another message for execution.  Semantic analysis for a grammar means to 
check if the grammar is suitable for parsing, e.g., because it fulfills a condition such as 

 

LL

 

(1).  
Using the image resulting from a grammar means at least to perform recognition, i.e., the exe-
cution message must implement at least a parsing algorithm.

When the parser recognizes a phrase, it must either build an abstract syntax tree or it should 
execute some user action.  A popular generator, 

 

yacc

 

, augments phrases with C statements.  
The phrases are specified in BNF, i.e., without an iteration syntax, to simplify how the C state-
ments get access to the symbols accepted by the phrase.

We have employed 

 

OOP

 

 to implement a parser generator 

 

oops

 

 [4] which accepts a grammar 
written in 

 

EBNF

 

, checks that it is 

 

LL

 

(1), and creates a recursive descent parser for it.  

 

oops

 

 
compiles itself; it was bootstrapped with 

 

jay

 

, a version of 

 

yacc

 

 which we retargeted to Java [5].  
Both versions of 

 

oops

 

 share the class library for the execution trees.

Unlike 

 

yacc

 

, 

 

oops

 

 can deal with 

 

EBNF

 

 and has no syntax for user actions.  When the gener-
ated parser starts on a phrase it creates a goal object from a phrase-specific class.  The goal 
object receives 

 

shift

 

 and 

 

reduce

 

 messages as the phrase is recognized and completed.  User 
actions can be implemented in the required methods for the goal classes.  We provide trivial 
goal classes for checking a grammar and tracing recognition.

sentence
l l -> m

o

sentence
m

grammar
EBNF EBNF -> m

o

grammar
m
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Objects play a major role in 

 

oops

 

:  parser objects encapsulate lookahead and follow sets, 
which are used for 

 

LL

 

(1) checking and for steering the recursive descent during execution, 
goal objects encapsulate the state of phrase recognition.  We have implemented an automatic 
error recovery based on the lookahead and follow sets, but the goal objects could be allowed 
to participate as well.

 

Divide and Conquer

 

The 

 

OOP

 

 approach taken in 

 

oops

 

 automates a design by 

 

divide and conquer

 

 for 

 

LL

 

(1) check-
ing and parsing.  

 

oops

 

 is simple enough for use in a compiler construction class to lead to dis-
covery of the algorithm based on syntax graph building blocks like the following:

These blocks can be represented by 

 

Alt

 

 and 

 

Seq

 

 nodes which accomplish recognition by 
deferring to their subtrees to process alternatives or a sequence.  Specifically, 

 

Alt

 

 needs to 
know which subtree to invoke.  This can be decided by considering lookahead sets:

 

Alt

 

 requires the lookahead sets of the subtrees to be distinct, and to be distinct from the fol-
low set if there is an empty alternative.  The lookahead sets can be computed by inspection; 

 

Alt

 

 adds the alternatives, 

 

Seq

 

 adds terms as long as there is a possibly empty term.  The fol-
low sets result from back propagation of lookahead sets; this has to be iterated as long as a 
nonterminal acquires a bigger follow set within a graph.

The point is that all these considerations are local within each building block for a syntax 
graph and lead directly to methods for the class representing the block.  They are simple 
enough to be developed in class and they yield a working 

 

LL

 

(1) parser generator.

 

Tree Traversal Techniques

 

Many algorithms in a compiler employ tree traversal.  For dealing with object trees, 

 

OOP

 

 has 
several techniques to offer:

In the visitor design pattern, a 

 

Visitor

 

 object is sent to the root of the tree.  A node always 
calls the visitor back sending itself as an argument.  The class of the argument, i.e., the class 
of the visited node, is used to divide node processing among different methods in the visitor.  
In Java, overloading can be employed:  

 

Visitor

 

 objects must implement a 

 

visit

 

 method for 
each possible node class and the 

 

accept

 

 method is implemented in each node class so that 
overloading selects the appropriate method at the visitor.  To allow for tree traversal, the node 
class gives a visitor access to a node’s children.

Alt Seq

tree visitoraccept:

visit:this

interface Visitor {
  visit (SomeClass node);
     // for each kind of node class
}
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Visitor

 

 support can be generated by a tree-building parser such as JavaCC but is fairly diffi-
cult to extend or inherit later, i.e., reuse of visitors is hard once the node class library is modi-
fied.  The visitor pattern certainly encourages design by 

 

divide and conquer

 

 but it is awkward 
to share the same action for different node classes.

In particular for semantic analysis we found it more convenient to implement a tree traversal 
by requiring each node class to implement a suitable method directly.  While this precludes dif-
ferent implementations for the same traversal job, e.g., transparently selecting code genera-
tion for different architectures, it simplifies inheritance and code reuse significantly over the 
visitor pattern implemented by JavaCC.  In Objective C, categories can be added to existing 
classes to add new methods — this is a very useful mechanism to add new traversals to an 
entire class hierarchy.

A third, more powerful technique is method selection based on a pattern of node and children 
classes:

 

node-class

 

 

 

child-class

 

...

 

 

 

{

 

 

 

Java statements with access to node and children

 

 

 

}

 

...

 

We implemented a simple tool, 

 

jag,

 

 to convert these pattern/action statements into Java meth-
ods which are conceptually attached to the node classes and inherited by subclasses, much 
like the effect of Objective C categories.  Inheritance combined with overloading permits 
refinement of initially very coarse traversal rules and significant reuse between projects.

 

Conclusion

 

The popularity of Java has made it the language of choice for many university courses if not 
industrial projects.  While in our opinion Java is not yet quite robust, efficient, and above all 
portable enough for mission-critical applications, it is likely to get there soon and it does make 
sense to investigate old programming techniques using new paradigms.

Java supports and (much more than C++) encourages 

 

OOP

 

 which makes significant promises 
to improve critical aspects of the software development process.  We tried to show in this 
paper that these promises do apply to compiler construction:  for projects, 

 

OOP

 

 in compilers 
permits significant code reuse, for instruction, 

 

OOP

 

 in compilers simplifies the design effort 
and makes some important algorithms accessible and transparent.
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