

1

Object-oriented Compiler Construction

Axel-Tobias Schreiner, Bernd Kühl
University of Osnabrück, Germany

{axel,bekuehl}@uos.de

,

http://www.inf.uos.de/talks/hc2

Extended Abstract

A compiler takes a program in a source language, creates some internal representation while
checking the syntax of the program, performs semantic checks, and finally generates some-
thing that can be executed to produce the intended effect of the program.

The obvious candidate for object technology in a compiler is the symbol table: a mapping
from user-defined names to their properties as expressed in the program. It turns out how-
ever, that compiler implementation can benefit from object technology in many more areas.

If the internal representation is a tree of objects, semantic checking and generation can be
accomplished by sending a message to these objects or by visiting each object. If the result of
generation is a set of persistent objects, program execution can consist of sending a message
to a distinguished object in this set.

Compilers are usually made with tools such as parser and lexical analysis generators. A
parser-generator takes a grammar, specified in a language such as

BNF

 or

EBNF

, checks it,
and constructs a representation (the parser) which will execute semantic actions as phrases
over the grammar are recognized. If the parser consists of a set of persistent objects, check-
ing the grammar is accomplished by sending a message to the objects. Similarly, recognizing
a program amounts to a message to the start symbol of the grammar. Goal objects are then
created to represent the phrases to be recognized and the user actions are defined as meth-
ods for the goals which are called from the parsing objects.

The presentation will discuss existing Java implementations of these ideas:

oops

, a parser-
generator based on

EBNF

 and objects; the compiler kit, a class library for implementing parse
trees and interpreters for typical programming language constructs; and

jag

, an object-based
tool for tree traversal, helpful in debugging and classical code generation.

Introduction

This paper summarizes our experiences how compiler construction benefits from object-ori-
ented programming techniques. We have gained them in several projects and used them to
great advantage in two courses on compiler construction with Objective C and Java [1].

It turns out that

OOP

 can be applied productively in every phase of a compiler implementation
and it delivers the expected benefits:

objects

 enforce information hiding and state encapsula-
tion,

methods

 help to develop by

divide and conquer,

all work is carried out by

messages

which can be debugged by instrumenting their methods. Most importantly,

classes

 encourage
code reuse between projects and

inheritance

 allows code reuse within a project and modifica-
tions from one project to another. As an added benefit, modern

class libraries

 contain many
pre-fabricated algorithms and data structures.

2

The diagram shows the major components of a typical compiler:

lex

 collates source charac-
ters into words.

symtab

 manages a table mapping these words to symbol descriptions which
are passed around during the rest of the compilation process.

syn

 checks the symbol
sequence against a grammar and usually constructs a tree representing the source.

sem

checks the tree for semantic correctness and might modify it to account for implicit operations.
Finally,

gen

 produces an image of the source that can be executed in some

run

 environment.

The rest of this paper tours these components and discusses how object-orientation can be
applied in their implementation and what benefits we found.

Symbol Table

symtab

 manages a container for descriptions of mostly user-defined symbols:

lex

 assembles
a word form the source and hands it as a key to

symtab

 to locate a description or create a new
one. The lookup happens once per word of the source: from this point on the description is
passed along by reference. Other parts of the compiler query the description or contribute
more information.

Symbol table and descriptions are obvious candidates for

OOP

 within a compiler: the table is
a container object where each description object is held. The descriptions share at least the
ability to be located by key. If a base class is used to hold the key, inheritance helps to encap-
sulate and share the lookup mechanism while keeping it separate from the information consti-
tuting the actual description. Depending on the implementation language, it is highly likely
that an existing class library provides a suitable container, an efficient lookup mechanism, and
perhaps even value representations for some of the description information.

Parse Tree

Given an excerpt from a typical grammar:

sum: product | sum ’+’ product
product: term | product ’*’ term
term: identifier | literal

Then

x + 10

 is a sentence for which the following trees can be built:

The leaves of both trees are input symbols, other nodes represent grammar phrases. An
abstract syntax tree contains a node for each recognized nonterminal symbol and the children
correspond to the symbols in a phrase for the nonterminal symbol; parser generator tools
such as

JavaCC

 [2] often produce an abstract syntax tree automatically. A parse tree is a

lex syn gen

symtab sem run

source symbols tree image

table

sum

product

sum

+

product term

term int: 10

id: x

abstract syntax tree

+

id: x

int: 10

parse tree

3

pruned version of the abstract syntax tree; while it must be built more or less by hand during
syntax analysis, it can be designed to be much more suitable for the tree traversals constitut-
ing the remaining phases of the compilation process.

Once the tree nodes are objects of classes specific to the grammar phrases, the rest of the
compilation is carried out by methods in these classes, i.e., there is an automatic

divide and
conquer

 imposed for semantic analysis, etc. Inheritance further simplifies the implementation,
e.g., there is little difference in checking all six relational operators or in generating code for
some commutative operators and different value types.

For our courses we have implemented an extensible

compiler kit

 (class library) as a reusable
universal back end. Syntax analyzers for different languages build parse trees using these
classes and the compiler kit does everything else: it performs semantic analysis and gener-
ates a persistent, executable tree as an image. The Java version of the kit was carefully
designed so that semantic analysis can be modified by inheriting from and overwriting classes
in the kit. Data type operations can be restricted or extended, new data types can be added,
and type mixing rules can be adapted. The Objective C version of the kit included code gen-
eration into Holub’s C-code [3], an assembler-like coding style for C emulating a fictitious
machine architecture.

OOP

 opens the possibility to implement the expression part of a language by selecting from
the compiler kit’s data types (or adding one’s own) and building a parse tree using these
classes. The drawback is that there are many classes and many, mostly small methods, but
the advantage is a very significant gain in reusability. The following sections discuss some
details.

Execution

Using

OOP

 a compiler can transform a program source into a tree of persistent objects as an
image. Execution is accomplished by sending a message to the root node of that tree which
results in partial traversal as the message is passed along the tree.

Specifically in Java it is very simple to make objects persistent. This results in a cheap, plat-
form-independent image format and images can be executed wherever a Java machine is
available. Moreover, the execution message can be reused in the compiler, e.g., when con-
stant expressions need to be evaluated or expressions should be partially folded. This is a
significant advantage as it ensures that identical mechanisms are used for evaluation during
compilation and execution.

Semantic Analysis

Semantic analysis decides if a syntactically acceptable program is meaningful. For a large
part it is concerned with the interaction of various data types in expressions: during a post-
order traversal of the parse tree, result types are computed for each part of an expression and
stored in the nodes for the benefit of code generation.

Parse tree nodes are objects, their classes must implement a method to perform semantic
checking of the node. If necessary, the method can augment the parse tree with conversion
nodes. Types are modeled as unique objects. They have methods informing the semantic
analysis about available operations for the type and about permissible interaction with other
types. Other type methods generate a simplified, persistent runtime tree which can be used
as an interpreter or traversed for code generation.

Implementing semantic analysis as a method for the node classes automates a

divide and
conquer

 approach which immediately carries over to new classes. A lot of effort in a compiler

4

implementation is spent on code to check expressions.

OOP

 and a careful design of type
modeling permits reusing this code in new projects.

Types

It is very important to design the type mechanism so that it can be modified, extended, or
restricted in different projects. The key is to let operator nodes ask type objects during seman-
tic analysis whether the intended operations are in fact available:

sem:
 for children: child.sem() // sets children’s types
 for children:
 if child.type.supports(’+’, otherType):
 type = child.type.result(’+’, otherType)
 break
 if type not set: error // impossible operation

This basic approach is extended to let each type decide if it is willing to convert from the other;
if so, the type is asked to add a conversion node to the tree.

Types are represented by type objects, i.e., a type class from the compiler kit can be extended
or restricted by subclassing and using a subclass object to represent a modified type. Thusly,
the compiler kit can be reused to implement a language with a different set of types and mix-
ing rules.

Syntax Analysis

A compiler converts a sentence written in some language, i.e., a program, into an executable
image. A compiler-compiler converts a sentence written in a language like

EBNF

, i.e., a gram-
mar, into an image which is itself a compiler.

As discussed above, an image is a tree of objects which understand a message for semantic
analysis and another message for execution. Semantic analysis for a grammar means to
check if the grammar is suitable for parsing, e.g., because it fulfills a condition such as

LL

(1).
Using the image resulting from a grammar means at least to perform recognition, i.e., the exe-
cution message must implement at least a parsing algorithm.

When the parser recognizes a phrase, it must either build an abstract syntax tree or it should
execute some user action. A popular generator,

yacc

, augments phrases with C statements.
The phrases are specified in BNF, i.e., without an iteration syntax, to simplify how the C state-
ments get access to the symbols accepted by the phrase.

We have employed

OOP

 to implement a parser generator

oops

 [4] which accepts a grammar
written in

EBNF

, checks that it is

LL

(1), and creates a recursive descent parser for it.

oops

compiles itself; it was bootstrapped with

jay

, a version of

yacc

 which we retargeted to Java [5].
Both versions of

oops

 share the class library for the execution trees.

Unlike

yacc

,

oops

 can deal with

EBNF

 and has no syntax for user actions. When the gener-
ated parser starts on a phrase it creates a goal object from a phrase-specific class. The goal
object receives

shift

 and

reduce

 messages as the phrase is recognized and completed. User
actions can be implemented in the required methods for the goal classes. We provide trivial
goal classes for checking a grammar and tracing recognition.

sentence
l l -> m

o

sentence
m

grammar
EBNF EBNF -> m

o

grammar
m

5

Objects play a major role in

oops

: parser objects encapsulate lookahead and follow sets,
which are used for

LL

(1) checking and for steering the recursive descent during execution,
goal objects encapsulate the state of phrase recognition. We have implemented an automatic
error recovery based on the lookahead and follow sets, but the goal objects could be allowed
to participate as well.

Divide and Conquer

The

OOP

 approach taken in

oops

 automates a design by

divide and conquer

 for

LL

(1) check-
ing and parsing.

oops

 is simple enough for use in a compiler construction class to lead to dis-
covery of the algorithm based on syntax graph building blocks like the following:

These blocks can be represented by

Alt

 and

Seq

 nodes which accomplish recognition by
deferring to their subtrees to process alternatives or a sequence. Specifically,

Alt

 needs to
know which subtree to invoke. This can be decided by considering lookahead sets:

Alt

 requires the lookahead sets of the subtrees to be distinct, and to be distinct from the fol-
low set if there is an empty alternative. The lookahead sets can be computed by inspection;

Alt

 adds the alternatives,

Seq

 adds terms as long as there is a possibly empty term. The fol-
low sets result from back propagation of lookahead sets; this has to be iterated as long as a
nonterminal acquires a bigger follow set within a graph.

The point is that all these considerations are local within each building block for a syntax
graph and lead directly to methods for the class representing the block. They are simple
enough to be developed in class and they yield a working

LL

(1) parser generator.

Tree Traversal Techniques

Many algorithms in a compiler employ tree traversal. For dealing with object trees,

OOP

 has
several techniques to offer:

In the visitor design pattern, a

Visitor

 object is sent to the root of the tree. A node always
calls the visitor back sending itself as an argument. The class of the argument, i.e., the class
of the visited node, is used to divide node processing among different methods in the visitor.
In Java, overloading can be employed:

Visitor

 objects must implement a

visit

 method for
each possible node class and the

accept

 method is implemented in each node class so that
overloading selects the appropriate method at the visitor. To allow for tree traversal, the node
class gives a visitor access to a node’s children.

Alt Seq

tree visitoraccept:

visit:this

interface Visitor {
 visit (SomeClass node);
 // for each kind of node class
}

6

Visitor

 support can be generated by a tree-building parser such as JavaCC but is fairly diffi-
cult to extend or inherit later, i.e., reuse of visitors is hard once the node class library is modi-
fied. The visitor pattern certainly encourages design by

divide and conquer

 but it is awkward
to share the same action for different node classes.

In particular for semantic analysis we found it more convenient to implement a tree traversal
by requiring each node class to implement a suitable method directly. While this precludes dif-
ferent implementations for the same traversal job, e.g., transparently selecting code genera-
tion for different architectures, it simplifies inheritance and code reuse significantly over the
visitor pattern implemented by JavaCC. In Objective C, categories can be added to existing
classes to add new methods — this is a very useful mechanism to add new traversals to an
entire class hierarchy.

A third, more powerful technique is method selection based on a pattern of node and children
classes:

node-class

child-class

...

{

Java statements with access to node and children

}

...

We implemented a simple tool,

jag,

 to convert these pattern/action statements into Java meth-
ods which are conceptually attached to the node classes and inherited by subclasses, much
like the effect of Objective C categories. Inheritance combined with overloading permits
refinement of initially very coarse traversal rules and significant reuse between projects.

Conclusion

The popularity of Java has made it the language of choice for many university courses if not
industrial projects. While in our opinion Java is not yet quite robust, efficient, and above all
portable enough for mission-critical applications, it is likely to get there soon and it does make
sense to investigate old programming techniques using new paradigms.

Java supports and (much more than C++) encourages

OOP

 which makes significant promises
to improve critical aspects of the software development process. We tried to show in this
paper that these promises do apply to compiler construction: for projects,

OOP

 in compilers
permits significant code reuse, for instruction,

OOP

 in compilers simplifies the design effort
and makes some important algorithms accessible and transparent.

References

[1]

http://www.vorlesungen.uos.de/informatik/compilerbau98

[2]

http://www.metamata.com

[3] A. Holub, Compiler Design in C, ISBN 0-130-255-252-5.

[4] http://www.inf.uos.de/oops

[5] http://www.inf.uos.de/jay

	Object-oriented Compiler Construction
	Extended Abstract
	Introduction
	Symbol Table
	Parse Tree
	Execution
	Semantic Analysis
	Types
	Syntax Analysis
	Divide and Conquer
	Tree Traversal Techniques
	Conclusion
	References

