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OOP versus FP

Why Object-Oriented Programming?

Reasons for studying object-oriented programming:
e Learn a different way to think about programming:

About ‘interaction between objects with defined responsibilities’ instead of
‘operations (functions) on — possibly shared — data (machine state)’.
(= SmallTalk)

e Reduction of complexity by dividing the program into small, reasonably in-
dependent and re-usable components, that talk to each other using only
well-defined interfaces

e Improvement of productivity by using easily adaptable pre-defined software
components.

Object-oriented programming is based on many of the fundamental ideas of struc-
tural programming (modules, information hiding), but also adds new concepts of
its own (inheritance, polymorphism).

Fully object-oriented programming languages are dynamic:

Some information — like object types or method implementations - does not have
to be fully specified (or cannot even be determined) at compile time. Determining
this is deferred until run time, which can lead to type errors or invocations of
non-existent methods at run time!



Object-Oriented Programming

From Object-Oriented Programming and the Objective-C Language [OOP 95]:

“Programming languages have traditionally divided the world into two parts — data
and operations on data. Data is static and immutable, except as the operations
may change it. The procedures and functions that operate on data have no lasting
state of their own; they’re useful only in their ability to affect data.

This division is, of course, grounded in the way computers work, so it’s not one
that you can easily ignore or push aside. Like the equally pervasive distinctions
between matter and energy and between nouns and verbs, it forms the background
against which we work. At some point, all programmers — even object-oriented
programmers — must lay out the data structures that their programs will use and
define the functions that will act on the data.

With a procedural programming language like C, that’s about all there is to it.
The language may offer various kinds of support for organizing data and functions,
but it won’t divide the world any differently. Functions and data structures are
the basic elements of design.

Object-oriented programming doesn’t so much dispute this view of the world as
restructure it at a higher level. It groups operations and data into modular units
called objects and lets you combine objects into structured networks to form a com-
plete program. In an object-oriented programming language, objects and object
interactions are the basic elements of design.

Every object has both state (data) and behaviour (operations on data). In that,
they’re not much different from ordinary physical objects. It’s easy to see how a
mechanical device, such as a pocket watch or a piano, embodies both state and
behaviour. But almost anything that’s designed to do a job does too. Even simple
things with no moving parts such as an ordinary bottle combine state (how full
the bottle is, whether or not it’s open, how warm its contents are) with behaviour
(the ability to dispense its contents at various flow rates, to be opened or closed,
to withstand high or low temperatures).

It’s this resemblance to real things that gives objects much of their power and
appeal. They can not only model components of real systems, but equally as well
fulfil assigned roles as components in software systems.”



Comparison to Functional Programming

Basic elements of functional programming are:
e Variables in the mathematical sense (named values)
e Functions in the mathematical sense (mapping values to values)
The result of a function depends only on its arguments and the context at
function definition time.
Basic elements of object-oriented programming are:
e Objects (data) with — typically — non-constant state

Variables are storage locations in memory that may hold different values at
different times.

e Methods (operations) on objects (data) that may or may not change the
objects state.

The result of a method should depend only on its arguments and the object’s
state at method invocation time.

So: Object-oriented programming is basically imperative programming with an
additional level of abstraction regarding data and functions.
But:

None the less, you can do functional programming in an object-oriented program-
ming language (even in some imperative programming languages), because:

e Objects (data) can have constant state (final in Java)

This leads to the idea of constant objects (value objects). Classes like String
and Integer in Java are examples of this.

e Methods (operations) can depend only on its’ arguments and the context
available at method definition time.

How elegant this works out in practice depends heavily on the features supported
by a concrete programming language.



Functional Programming in a non FP Language

A small example: reverse in Perl

How might a pre-defined ‘reverse’ operation on lists be implemented?

It may look like this:

sub reverse {
my Qargs = Q_;

if (defined $args[0]) {
(reverse(Qargs[1..$#args]), $args[0]);
} else {
0O
}
}

Or it may look like this:

sub reverse {
my Qargs = Q_;
my Q@result = ();

foreach $arg (Gargs) {
Q@result = ($arg, Qresult)

}

return Qresult;

Does it matter?



Functional Programming in a non FP Language

Since a function is really a ‘black box’ (information hiding), this actually has two
different aspects:

e Implementing a function in functional programming style (implementor’s
view)

A function implemented this way and using only constant data and other
‘functional’ functions looks and works just like its equivalent in a real func-
tional programming language.

e Implementing a function that behaves like a function in a functional pro-
gramming language (user’s view)
Note that to do this it does not have to be implemented in functional pro-

gramming style!

Quite a lot of functions (and methods) in typical imperative or object-
oriented programming languages are implemented like this (like strlen(),
sqrt () in C, or all methods on String-objects in Java).



Functional programming in Java

This was (part of) the definition of the datatype 1ist in ML:

datatype ’a list = nil
| :: of ’a * ’a list;

Java needs an explicit constructor (factory method) for this:
public class List {

public static List nil = new List();

public Object head;
public List tail;

public static List cons (Object head, List tail) {

List list = new List();
list.head = head;
list.tail = tail;

return list;

}
Of course it is useful if the value can be printed easily:

public String toString ()

{
if (this == nil)
return "nil";
else
return "cons(" + head + ", " + tail + ")";
}

Pattern matching (like in ML) is just ‘syntactic sugar’ and has basically nothing
to to with functional programming, although it does make life a lot easier when
dealing with complex data structures.

This can be represented by one or more corresponding predicates and a chain of
‘if’-statements inside the methods:

public boolean iscons ()

{

return head != null;



And a set of a few typical functions on a list:

fun nlength [] =0
| nlength (x::xs) = 1 + nlength xs;

public static int nlength (List 1)

{
if (1 == nil) return O;
if (1.iscons()) return 1 + nlength(l.tail);
throw new IllegalArgumentException();

}

infix 5 @;  (x append *)
fun ([] @ ys) = ys
| ((x::x8) @ ys) =x :: (xs @ ys);

public static List append (List 1, List list)

{
if (1 == nil) return list;
if (1.iscons()) return cons(l.head, append(l.tail, list));
throw new IllegalArgumentException();

}

fun nrev [1 = []

| nrev (x::xs) = nrev(xs) @ [x];

public static List nrev (List 1)

{
if (1 == nil) return nil;
if (1.iscons()) return append(nrev(l.tail), cons(l.head, nil));
throw new IllegalArgumentException();

}

public static List nrev_evil_evil_evil (List 1)

{
List result = nil;
for (; 1 '= nil; 1 = 1.tail) result = cons(l.head, result);
return result;

}



This implementation actually is not object-oriented at all, which makes it more
similar to the ML-version.

Test program (main) and output:

public static void main (String argsl[])

{
List 1 = cons("Hello", cons("World", nil));
List 12 = append(1, 1);
List lrev = nrev(12);
List lrevrev = nrev_evil_evil_evil(lrev);
System.out.println(1l + " : " + nlength(1l));
System.out.println(12 + " : " + nlength(12));
System.out.println(lrev + " : " + nlength(lrev));
System.out.println(lrevrev + " : " + nlength(lrevrev));
}
}
$ java List

cons (Hello, cons(World, nil)) : 2

cons (Hello, cons(World, cons(Hello, cons(World, nil)))) : 4
cons (World, cons(Hello, cons(World, cons(Hello, nil)))) : 4
cons (Hello, cons(World, cons(Hello, cons(World, nil)))) : 4



Functional programming in Java

Somewhat more interesting is the implementation of the infinite lazy list (sequence)

in Java. Again, first the ML code followed by the corresponding Java code:
datatype ’a seq = Nil

| Cons of ’a * (unit -> ’a seq);
exception Empty;

Here, Java needs an interface to hold the function signature:

public class Seq {
public static Seq Nil = new Seq();

public Object head;
public Succ tail;

public static interface Succ { Seq succ (); }
public static class Empty extends RuntimeException {}

public static Seq Cons (Object head, Succ tail)

{
Seq seq = new Seq();
seq.head = head;
seq.tail = tail;
return seq;

}

Again, toString() and isCons():

public String toString ()

{
if (this == Nil)
return "Nil";
else
return "Cons(" + head + ", fn)";
}
public boolean isCons ()
{
return head != null;
}
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fun hd (Cons(x, xf)) = x
| hd Nil = raise Empty;

fun tl1 (Cons(x, xf)) = xf()
| t1 Nil = raise Empty;

public static Object hd (Seq s)

¢ if (s.isCons()) return s.head;
throw new Empty();

}

public static Seq tl (Seq s)

¢ if (s.isCons()) return s.tail.succ();
throw new Empty();

}

Delayed evaluation and a closure, realized as an anonymous inner class in Java
(that can only have constant context, which is all we want for FP):

fun from k = Cons(k, fn() => from (k + 1));

public static Seq from (final int k)
{

return Cons(new Integer(k),
new Succ() { public Seq succ () { return from(k + 1); }});

}
fun take (xq, 0) = []
| take (Nil, n) = raise Subscript
| take (Cons(x, xf), n) = x :: take (xf(), n - 1);

public static List take (Seq s, int n)

{
if (n == 0) return List.nil;
if (s == Nil) throw new IndexOutOfBoundsException();
if (s.isCons()) return List.cons(hd(s), take(tl(s), n - 1));
throw new IllegalArgumentException();
}

fun squares Nil : int seq = Nil
| squares (Cons(x, xf)) Cons(x * x, fn() => squares (xf()));

public static Seq squares (final Seq s)
{
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if (s == Nil) return Nil;
if (s.isCons()) return Cons(new Integer(((Integer) hd(s)).intValue() *
((Integer) hd(s)).intValue()),
new Succ() { public Seq succ ()
{ return squares(tl(s)); }});

throw new IllegalArgumentException();

fun Nil @ yq = yq
| (Cons(x, xf) @ yq) = Cons(x, fn() => (xf()) @ yq);

public static Seq append (final Seq s, final Seq seq)

{
if (s == Nil) return seq;
if (s.isCons()) return Cons(hd(s), new Succ() { public Seq succ ()
{ return append(tl(s), seq); }});
throw new IllegalArgumentException();
}

Test program (main) and output:

public static void main (String args[])

{
Seq s1 = from(1);
Seq s2 = squares(sl);
System.out.println(sl);
System.out.println(tl(sl));
System.out.println(tl(tl(s1)));
System.out.println(tl1(t1(t1l(s1))));
System.out.println(take(s2, 10));
}
}
$ java Seq
Cons(1, fn)
Cons(2, fn)
Cons(3, fn)
Cons(4, fn)

cons(1, cons(4, cons(9, cons(16, cons(25, cons(36, cons(49, cons(64,
cons (81, cons(100, nil))))))))))

The Seq example demonstrates how a function can be returned as a result value.
Functionals (like map), that expect functions as arguments, can be implemented
likewise using interfaces and anonymous inner classes.

This is left as an excercise for the reader...
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Closures in Object-Oriented Languages

Closures are not only a feature of functional programming languages.

Some object-oriented languages also have closures as a language construct and
(consequently) allow modifiable context shared between different closures!

Closures in SmallTalk are even used to build control structures [Budd 97]:

canAttack: testRow column: testColumn | columnDifference |
columnDifference <- testColumn - column.
(((row = testRow) or:
[row + columnDifference = testRow]) or:
[row - columnDifference = testRow])
ifTrue: [ ~ true ].
~ neighbour canAttack: testRow column: testColumn.

This avoids the special treatment of conditional expressions, which are — as we
have seen — not functions in ML (they are in SmallTalk). Of course, this could
also be implemented in ML with a little bit of extra work for the programmer.

Lisp handles this in the same way as SmallTalk(?)
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Datatypes and Type Polymorphism

Building (abstract) complex data types by combining elements of already defined
types is a common feature of both functional and imperative (object-oriented)
programming languages.

Much more interesting is the concept of type polymorphism:

A function (or method) that does not need to know the specific type of a parameter
value can leave it unspecified (or not fully specified). Then, only those operations
may be performed on the value that do not themselves depend on knowlegde of
the concrete type.

This is implemented using type variables in ML, so you can write:
fun id x = x;

Type polymorphism is also one of the central features of object-oriented program-
ming and can be much more flexible than the ML system, but cannot guarantee
that errors are detected at compile time!

The function above written in SmallTalk would look like this:
id: x | ~ x.

Types in OO languages can define behaviour (a set of implemented operations),
and parameters can be restricted to objects that conform to this behaviour, which
is checked at compile time or run time. (= instanceof in Java, respondsTo: in
SmallTalk and conformsTo: in Objective-C). ML only has the — not very general
— concept of equality types here.

There are more strictly typed object-oriented programming languages (like Java,
comparable to ML, but no type inference), full untyped object-oriented program-
ming languages (‘everything is an object’) like SmallTalk, and mixed forms that
allow the user to specify a type if appropriate (one example for this is Objective-C,
an object-oriented dialect of ANSI-C with OO-extensions taken from SmallTalk).
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Functors versus Interfaces

Functors in ML are used to make module implementations independent of each
other (which is fundamental to building replaceable structures).

This can be used similar to classes in Java (signatures correspond to interfaces
in this model). Functors however, still suffer from the same limitations regarding
type polymorphism:

A functor has to be instantiated for each concrete structure type, and in this
process becomes specific to this type. You can create a (finite) set of functors for
different implementations of a signature, but you cannot instantiate a functor that
works with arbitrary implementations of this signature (this is similar to ML lists,
which can hold only one type of values for any given list).

Functor example in ML (taken from the class notes):

signature A =
sig
type ’a t;
val bottom: ’a t;
val next: ’a t -> ’a t;
end;

structure As =
struct
type ’a t = int list;
val bottom = [];
fun next (x) = 1::x;
end;

functor TestA (At : A) =
struct
fun tst a = At.next a;
end;

structure TestAs = TestA (As);

> [...]
> structure TestAs : {val ’a tst : int list -> int list}
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Functors versus Interfaces

The same example implemented in Java (note that dummy instances need to be
created because interfaces cannot declare static methods, i.e. functions, in Java):

public class Functor {
public static interface A {
List bottom ();
List next (List 1);
}

public static class As {
public List bottom ()

{
return List.nil;
}
public List next (List 1)
{
return List.cons(new Integer(1), 1);
}
}
public static class TestA { // uses A
public static List tst (A sig, List 1)
{
return sig.next(1);
}
}
public static void main (String args[])
{
class Asi extends As implements A {}
A as = new Asi();
System.out.println(TestA.tst(as, TestA.tst(as, as.bottom())));
}

3

$ java Functor
cons (1, cons(1l, nil))
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