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In this paper, we show how standard GIS operations like the complement,
union, intersection, and buffering of maps can be made more flexible by
using fuzzy set theory. In particular, we present a variety of algorithms
for operations on fuzzy raster maps, focusing on buffer operations for
such maps. Furthermore, we show how widely-available special-purpose
hardware (in particular, z-buffering in graphics hardware) can be used for
supporting buffer operations in fuzzy geographic information systems (GIS).

Keywords: Geographic information systems, raster maps, buffering, fuzzy
logic

1 Introduction

Geographic information systems (GIS) have been in use for quite a while now
(Coppock and Rhind, 1991), but their functionality has changed only little over
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the years. In spite of being calledgeographic, GIS have so far been mostly ge-
ometric in nature, ignoring the temporal, thematic, and qualitative dimensions of
geographic features (Molenaar, 1996; Sinton, 1978; Usery,1996). There are, how-
ever, several attempts to overcome these limitations and toincorporate qualitative
(Egenhofer and Golledge, 1997; Frank, 1994; Frank, 1996; Peuquet, 1994) or
fuzzy aspects (Altmann, 1994; Brimicombe, 1997; Molenaar,1996; Plewe, 1997)
in GIS. This paper focuses on the latter aspect, extending work that has been
published previously (Guesgen and Hertzberg, 2000a; Guesgen and Hertzberg,
2000b; Guesgen and Hertzberg, 2001; Guesgen et al., 2001).

An essential operation in GIS is map overlay, where new maps are computed
from existing ones by applying either:1

• Buffer operations, which increase the size of an object by extending its
boundary, or

• Set operations, such as complement, union, and intersection.

In traditional GIS, these operations are exact quantitative operations. Humans,
however, often prefer a qualitative operation over an exactquantitative one, which
can be achieved by extending the standard map overlay operations to fuzzy maps
and using fuzzy logic rather than crisp logic.

Consider, for example the simple raster maps in Figure 1. Thefirst row shows
raster maps for the location of roads (a-i), the location of water (a-ii), locations
of residences (a-iii), and the location of native forest (a-iv) in a fictional region.
The second row is an illustration of crisp buffering operations. It contains raster
maps illustrating roads buffered by 200m (b-i), rivers buffered by 400m (b-ii),
residences buffered by 200m (b-iii), and unbuffered nativeforest areas (b-iv). The
third row shows the result of fuzzy buffering operations: areas close to roads, ob-
tained with a cone buffer function (Guesgen et al., 2001) of radius 400m (c-i),
areas close to rivers, obtained with a cone buffer function of radius 800m (c-ii),
areas close to residences, obtained with an inverse-distance buffer function (c-iii),
and a probability density distribution (Scott, 1992) basedon the recorded location
of native forest, obtained with a 50m-radius gaussian distribution (c-iv). Dark ar-
eas are areas of high membership, while light areas are thoseof low membership.

The last row illustrates how the fuzzy maps can be combined tofind areas
close to roads, not close to rivers or residences, and not on native forest. Such
areas might be required for an industrial development, for example. The boolean
classification of the crisp map (d-i) would generally be much less useful for de-
cision making than the fuzzy map (d-ii), in which darkness (i.e., the membership
grade) increases with suitability. The 3D membership surface illustration (d-iii)
provides an alternative view of the fuzzy map (d-ii). Here, the membership grade

1A more detailed introduction to these operations can be foundelsewhere (Guesgen and Histed,
1996).
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Figure 1. An illustration of buffering in a fuzzy GIS (Duff and Guesgen, 2002).
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is represented by terrain height rather than greyscale (which is irrelevant in this
illustration).

The rest of this paper is organized as follows. We start with abrief review of
fuzzy maps and the definition of set operations for fuzzy maps; a more detailed
introduction can be found elsewhere (Guesgen and Albrecht,1998). We then con-
tinue with the introduction of various algorithms for buffering fuzzy maps, which
is an extension of previously published work (Guesgen and Hertzberg, 2000a).
Finally, we show how graphics hardware can be used to implement buffering al-
gorithms more efficiently.

2 Fuzzifying Maps

In the following, we restrict ourselves to raster-based maps. Such a map consists
of a grid of cells whose values specify certain attributes ofthe locations repre-
sented by the map. In the simplest case, the cell values are restricted to 0 and
1, where 0 signals the absence and 1 the presence of a certain attribute, like the
attribute of a location being part of a road, waterway, residential area, commercial
area, rural area, etc.

In some cases there is a crisp boundary between locations that have a certain
attribute and those that do not have that attribute, but often this is not the case.
For example, it is not always clear where a rural area stops and a residential area
starts, or where a forest is not a forest any more. To cater forthis fact, we extend
the range of cell values from the set{0, 1} to the interval[0, 1], and thereby convert
a regular raster map into a fuzzy raster map. Given a celll in the fuzzy raster map,
µ(l) ∈ [0, 1] indicates the degree to whichl has the attribute represented by the
map. The functionµ(l) is called the membership function of the fuzzy raster map.

Performing a set operation (complement, union, and intersection) on fuzzy
raster maps is straightforward. There are several ways of defining the comple-
ment, union, and intersection of membership functions (Driankov et al., 1996),
but they all have in common that they are defined cell-wise for all cellsL in the
fuzzy raster map. In the case of the original max/min scheme (Zadeh, 1965), the
membership functions for the complement, union, and intersection are defined
as follows, whereµ1 andµ2 denote the membership functions of the underlying
maps andµ3 the one of the resulting map:

Complement: ∀l ∈ L : µ3(l) = 1 − µ1(l)
Union: ∀l ∈ L : µ3(l) = max{µ1(l), µ2(l)}
Intersection: ∀l ∈ L : µ3(l) = min{µ1(l), µ2(l)}

Since the membership functions for the complement, union, and intersection
are defined cell-wise, an algorithm for performing a set operation on fuzzy raster
maps can just iterate through the set of cells and compute a new value for each
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cell based on the given value(s) for that cell, which means the algorithm is linear
in the number of cells, i.e, its complexity isO(|L|).

3 Iterative Buffering of Fuzzy Maps

Unlike the set operations, buffer operations cannot be defined cell-wise. To de-
termine the new value of a celll in a crisp raster map, the values of all cells in
the neighborhood ofl are considered. If at least one of these values is 1, then the
value of l is changed to 1; otherwise it remains unchanged. In other words, the
new value ofl is the maximum of the original value ofl and the values of all cells
in the neighborhood ofl. A fuzzy raster map can be buffered crisply in a similar
way: the value ofl is changed to the maximum fuzzy value in the neighborhood
of l, which might be any value from the interval[0, 1] (rather than the set{0, 1}).

Although buffering a fuzzy raster map as indicated above might be of use for
many applications, we do not want to restrict ourselves to crisp buffer operations
for fuzzy raster maps. Rather, we want the buffer operation to depend on the
proximity of the cells under consideration. For example, ifthere is an area on the
map with very high membership grades, then the buffer operation should assign
high membership grades to cells that are very close to that area, medium high
membership grades to cells close to the areas, and low membership grades to cells
further away.

One way to achieve this behavior is to determine the direct neighbors of a cell
and to apply a buffer function to determine the new membership grade of these
neighbors. There are two types of direct neighbors:

• Edge-adjacent (4-adjacent) neighbors, or edge neighbors for short. Two
cells of the grid are edge neighbors if and only if they have anedge in
common.

• Vertex-adjacent (8-adjacent) neighbors, or vertex neighbors for short. Two
cells of the grid are vertex neighbors, if and only if they have a vertex in
common.

A buffer function is a monotonically increasing functionβ : [0, 1] → [0, 1] whose
value never exceeds its input:

∀m ∈ [0, 1] : β(m) ≤ m

An example of a simple buffer function isβ(m) = max{0,m − 0.1}.
If l0 is a neighbor ofl1, then the new membership grade ofl1 is determined

by the maximum of the old membership grade ofl1 and the value of the buffer
function applied to the membership grade ofl0:

µ(l1) ← max{µ(l1), β(µ(l0))}
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Brute-Force β-Buffering

Let µ be the membership function of the map.

Let β be a buffer function.

Let L be the set of all cells in the map to be buffered.

Repeat untilµ is stable:

For eachl0 ∈ L do:

For all neighborsli of l0 do:

µ(li) ← max{µ(li), β(µ(l0))}

Figure 2. A brute-force algorithm forβ-buffering raster fuzzy maps.

Since updating the membership grade ofl1 can have an impact on the membership
grades of the neighbors ofl1, the update process has to be repeated for all cells of
the map over and over again until a stable situation is obtained. In the following,
we refer to the process of buffering a fuzzy raster map, usinga buffer functionβ
as defined above, asiterative buffering, or β-buffering.

A brute-force algorithm forβ-buffering is shown in Figure 2. The algorithm
visits each cell of the map and updates its membership grade based on the mem-
bership grades of the neighboring cells.2 If any of the membership grades is
changed, the algorithm repeats the updating process until all membership grades
become stable. More precisely, the algorithm applies the buffer functionβ to the
membership gradeµ(l0) of a celll0 and uses the result to update the membership
grades of the four edge neighbors, or the eight vertex neighbors, ofl0, respectively.
Since the maximum operator is commutative and associative,the order in which
the cells are updated does not have an impact on the final result of the updating
process.

Since the algorithm revisits each cell when repeating the updating process, even
the ones whose neighbors have not been changed in the previous iteration, it per-
forms many unnecessary checks. An improved approach is to keep track of the
changed cells and to revisit a cell only if at least one of its neighbors has been
changed. The algorithm in Figure 3 achieves this by applyingthe principle of lo-
cal propagation: the membership grade of a cell is propagated to the neighbors of
the cell, which are then put on to the list of cells to be visited in the future.

The local propagation algorithm is guaranteed to terminate: since the value of
the buffer function never exceeds its input, we cannot get a cyclic set of updates.

2The membership grades of the neighboring cells are lower bounds for the new membership grade.
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β-Buffering by Local Propagation

Let µ, β, andL be defined as before (Figure 2).

While L 6= ∅ do:

Selectl0 ∈ L.

L ← L − {l0}

For all neighborsli of l0 do:

µ(li) ← max{µ(li), β(µ(l0))}

If µ(li) has changed, thenL ← L ∪ {li}

Figure 3. A local propagation algorithm forβ-buffering fuzzy raster maps.

At worst, a single cell can receive|L| − 1 updates, which correspond to paths of
updates originating at each of the other cells in the map. (Also note that a path of
updates cannot be longer than|L| − 1 cells.)

Although the propagation algorithm is guaranteed to terminate, it can be rather
inefficient: many cells may be revisited repeatedly as their membership grades
are overwritten by successively larger values. To prevent this from happening,
we can select a celll0 from L with a maximum membership grade. The grade
for l0 cannot be increased by any buffer operationβ(m), sinceβ(m) ≤ m for
all m ∈ [0, 1], which means that the current grade ofl0 is the final membership
grade for that cell. Since the membership grade ofl0 is both final and maximal,
buffering the neighbors ofl0 results in assigning a final membership grade to the
neighbors ofl0 as well. This means that none of the neighbors have to be revisited.
The improved algorithm is shown in Figure 4.

4 From Iterative Buffering to Global Buffering

So far, our discussion of algorithms revolved about a bufferfunctionβ. Although
propagating the result ofβ locally through a fuzzy raster map is a reasonable
way to buffer such a map, it is not ideal for global effects, since the membership
grade of a cell is determined by its original membership grade and the grade of its
immediate neighbors, but not by the membership grade of cells further away from
the cell under consideration. To achieve a more global effect, we replaceβ with a
global buffer (or proximity) functionψ that is applied not only to the membership
grades of the neighbors of a given celll0 but potentially to any celll in the map.
The functionψ has two arguments, one of which isµ(l0), the membership grade
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β-Buffering with Ordered Cells

Let µ, β, andL be defined as before (Figure 2).

While L 6= ∅ do:

Selectl0 ∈ L such thatµ(l0) is maximal inL.

L ← L − {l0}

For all neighborsli of l0 do:

µ(li) ← max{µ(li), β(µ(l0))}

Figure 4. An algorithm forβ-buffering fuzzy maps using ordered cells.

of l0, and the other isδ(l, l0), the distance betweenl andl0, which can be defined
as follows:

1. δ(l0, l0) = 0

2. ∀l 6= l0 :
δ(l, l0) = min{δ(l′, l0) | l′ neighbor ofl)} + 1

We requireψ to be monotonically increasing in the first argument, i.e.,the
larger the membership grade ofl0, the larger the value ofψ, and monotonically
decreasing in the second argument, i.e., the further awayl is from l0, the smaller
the value ofψ. We further require that the value ofψ never exceeds the value of
the first argument:

∀m ∈ [0, 1] and∀d ∈ [0,∞) : ψ(m, d) ≤ m (1)

The update of a membership grade is computed in a similar way as before:

µ(l) ← max{µ(l), ψ(µ(l0), δ(l, l0))}

In addition, we have to ensure that the resulting membershipgrades are intu-
itively plausible. In particular, we want to avoid having a local effect override a
more global one if they originate in the same cell. For example, if a cell l0 has
a distance of 1 to a celll1 and a distance of 2 to a celll2, thenψ(ψ(µ(l2), 1), 1)
should not exceedψ(µ(l2), 2), i.e., the new membership grade ofl0 is influenced
by the membership grade ofl2 directly rather than the propagation of that mem-
bership froml2 throughl1 to l0. We can enforce this property by requiring:

∀m ∈ [0, 1] and∀d0, d1, d2 ∈ [0,∞) :
d2 = d1 + d0 =⇒ ψ(m, d2) ≥ ψ(ψ(m, d1), d0)

(2)
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Figure 5. A raster map with its original fuzzy membership grades and its buffered
version. Greyscale shades indicate membership grades. A white circle in the
buffered map denotes a cell that received its membership grade directly or indi-
rectly from the circled cell in the original map. Where two membership grades
overlap, a larger value has precedence over a smaller one.

The buffer functionψ(m, d) = m

1+d
, for example, satisfies this criterion, whereas

ψ(m, d) = m

1+d2 does not.
If we require equality instead of inequality in Formula (2),we achieve the

same effect as with the functionβ as introduced in Section 3. Ifψ(m, d2) =
ψ(ψ(m, d1), d0), then the new membership grade of a celll with distanced from
cell l0 can be computed by applyingψ successively to the membership grade of
l0, i.e., by definingβ(m) ≡ ψ(m, 1):

µ(l) ← max{µ(l), ψ(ψ(. . . ψ
︸ ︷︷ ︸

d

(µ(l0), 1) . . .), 1)}

Figure 5 shows a fuzzy map being buffered, usingψ(m, d) = m

1+d
as the prox-

imity function and using a distance measure based on vertex adjacency. The orig-
inal map has only membership grades of 0 (unfilled white cells), except for: (A)
the filled black cells on the right of the map, which have a membership grade of
1 and (B) the single dark grey cell with a circle, which has a membership grade
of 1

2
. An interesting effect occurs at the cell with the grid in Figure 5. This cell

is closer to the single cell of Object B than to any cell in Object A. However, the
effect of buffering Object A overtakes the effect of buffering Object B due to the
larger membership grade of Object A:

ψ( 1

2
, 3) = 1

8
< ψ(1, 6) = 1

7

A brute-force algorithm for global buffering (also referred to asψ-buffering)
a fuzzy map using a global buffer functionψ can be obtained by extending the
update operations in the algorithm of Figure 2 to all cells inthe map. The resulting
algorithm is shown in Figure 6. The algorithm repeatedly iterates through the set
of cells, using the membership grades of a cell to update the membership grades of
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Brute-Force ψ-Buffering

Let µ be the membership function of the map.

Let ψ be a global buffer function.

Let L be the set of all cells in the map to be buffered.

Repeat untilµ is stable:

For eachl0 ∈ L do:

For all l ∈ L − {l0} do:

µ(l) ← max{µ(l), ψ(µ(l0), δ(l, l0))}

Figure 6. A brute-force algorithm forψ-buffering fuzzy raster maps.

the other cells. This is done regardless of whether the membership grade of a cell
can possibly have an effect on other cells or not. An improvement can be achieved
by using only those cells that have the potential to influence other cells. This is
the case if the current membership grade of the cell is not minimal and was not
derived from the membership grade of another cell through buffering. Cells with
minimal membership grade cannot increase the membership grade of another cell
during buffering, because the buffer operation always returns a value smaller than
or equal to the membership grade of the cell that is used as argument of the buffer
operation (cf. Formula (1)). A cell whose membership grade was derived from the
membership grade of another cell through buffering cannot make any contribution
because the other cell has spread its influence to all cells of the map already, and
since global effects dominate local ones (cf. Formula (2)),the current membership
grade of the cell under consideration does not have any additional effect.

Figure 7 shows an improved algorithm, which restricts the outer loop to the set
of cells that might have an influence on other cells. Initially, this set contains all
cells of the map. However, when a cell is detected whose membership grade is
updated through a buffer operation, the cell that was updated is removed from the
set of influential cells, because it won’t have any effect onthe membership grades
of other cells in a future iteration. In addition to that, thecells to be buffered
are selected according to their membership grades. Cells with large membership
grades are more likely to cause a cutoff than those with smaller grades. It therefore
makes sense to consider cells with large membership grades first.
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ψ-Buffering with Ordered Cells and Cutoffs

Let µ, ψ, andL be defined as before (Figure 6).

L′ ← L − {l | µ(l) is minimal inL}

While L′ 6= ∅ do:

Selectl0 ∈ L′ such thatµ(l0) is maximal inL′.

L′ ← L′ − {l0}

For all l ∈ L − {l0} do:

µ(l) ← max{µ(l), ψ(µ(l0), δ(l, l0))}

If µ(l) has changed, thenL′ ← L′ − {l}

Figure 7. An algorithm forψ-buffering fuzzy raster maps using ordered cells and
cutoffs.

5 Using Graphics Hardware for Buffering

So far, we have focussed on improving buffering by applying various software
techniques and heuristics. In the rest of this paper, we adopt a different course:
we describe an implementation of the brute-force algorithmthat is efficient be-
cause we use special-purpose hardware. Since a fuzzy map canbe viewed as a
two-dimensional pixel image in which the colors represent the different member-
ship grades of the fuzzy map, it is not surprising that techniques from the area of
computer graphics can be used to buffer fuzzy maps more efficiently. (Hoff et al.,
1999) suggest using graphics hardware to compute generalized Voronoi diagrams.
(Mustafa et al., 2001) use hardware generated Voronoi diagrams as the basis for
map simplification. We also adapt the idea of (Hoff et al., 1999) and will show
how such hardware (in particular, the z-buffer of the hardware) can be used to
buffer fuzzy maps.

The z-buffer (or depth buffer) is similar to the frame bufferin that it stores
information for each pixel of the image. The value stored in the z-buffer is the
depth of the closest object found so far that covers that pixel. Before a pixel is
given the color of a new object, the depth of the object at thatparticular pixel is
computed and compared with the depth stored in the z-buffer.If the new object
is closer, its color will be stored in the frame buffer and itsdepth value in the
z-buffer. Figure 8 shows this approach in algorithmic form.

In the context of buffering fuzzy maps, we use the z-buffer tomimic the current
fuzzy map, i.e., we take the depthζ(l0) of a given pixell0 to uniquely represent
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Z-Buffer Algorithm

Let L be the set of pixels of the image.

Let ζ(l) be the value of the z-buffer for the pixell ∈ L.

Let π(l) be the value of the frame buffer for the pixell ∈ L.

Let O be the set of objects to be rendered.

For allo ∈ O do:

For eachl ∈ L covered byo do:

Let z be the depth ofo at l.

Let p be the color ofo at l.

If z < ζ(l), then do:

ζ(l) ← z

π(l) ← p

Figure 8. An algorithm showing the use of the z-buffer in graphics hardware.

the membership gradeµ(l0). A close depth indicates a high membership grade,
whereas a far depth stands for a low membership grade.

To buffer the membership grade represented by the depth of the pixel, we ren-
der an object that approximates the buffer functionψ applied toµ(l). If we restrict
ourselves to buffer functions of the typeψ(m, d) = max{0,m−kd}, wherek de-
termines how fast the original membershipm diminishes with the distanced, the
object to be rendered is a right circular cone. Cones expand away from the camera,
and thus the depth of the cone is determined byζ(l) = (1 − ψ(µ(l0), δ(l, l0))).
A membership grade of 1 is mapped to a depth of zero, and a membership grade
of 0 is mapped to a depth of 1. Note that it is possible to use different values of
k within the same map to obtain different buffering effects for the objects repre-
sented in the map. Beyond that, cones of a different shape (not necessarily with
constant slopes) can be used to model other buffer functions.

To speed up the rendering process (i.e., to make the buffering process more
efficient), we approximate each buffering cone as a triangle fan, as shown in Fig-
ure 9. To further speed up the process, we suppress the rendering process for
certain pixels, if there are regions with equivalued pixels. In this case, we only
need cones from the boundary pixels.

As mentioned in Section 3, distance is sometimes defined in agrid structure
through neighborhood relationship. In the case of vertex neighbors, this means
that our buffer functionψ can be represented by a cone with four triangles (i.e., a
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y

x

depth

Figure 9. ζ(li) approximated by triangle fans.

pyramid) that is aligned parallel to the grid structure. In the case of edge neigh-
bors, this is also possible, but the pyramid is rotated by 45 degrees.

In general, we cannot guarantee the soundness of hardware buffering, as the
rendered objects are only approximations of the buffer function ψ.3 On the other
hand, there are experiments showing that fuzzy membership grades are quite ro-
bust, which means that it is not necessary to have exact membership grades (Bloch,
2000). The explanation given for this observation is twofold: first, fuzzy mem-
bership grades are used to describe imprecise information and therefore do not
have to be exact, and second, each individual fuzzy membership grade plays only
a minor role in the whole reasoning process, as it is usually combined with several
other membership grades.

6 Evaluation of the Algorithms

The brute-force algorithm of Figure 6 iterates through the set of cellsL, using
the membership grades of a cell to update the membership grades of the other
cells. Since this is done regardless of whether the membership grade of a cell can
have an effect on other cells or not, the algorithm has an average complexity of
O(|L|2).

The improved algorithm of Figure 7 still has the worst-case time complexity of
O(|L|2), since it can happen that the algorithm does not change any membership
grade and therefore has to iterate through all cells of the map. The time complexity
is bound from below by the time complexity of selecting cellsin the order of their
membership grades. If the membership grades are discrete, bucket sorting can be
used to sort the list beforehand, which makes sorting and selecting the cells linear;
otherwise, sorting and selecting isO(|L| · log |L|). In practice, the sorting time is
negligible and the quadratic properties of the algorithm dominate on most data.

The worst-case time complexity for buffering a fuzzy map using graphics hard-
ware isO(|L|2) in general andO(|L|) for certain special cases (Duff and Guesgen,

3There are special cases where the result is identical with the one obtained through the software
buffering algorithms (like the buffer functionψ(m, d) = max{0, m − kd}, which corresponds to a
right circular cone).
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Figure 10. Processing time of buffering with ordered cells and cutoffsplotted
against processing time of buffering using graphics hardware.

2002). In these cases, the graphics hardware method performs significantly better
than any of the software algorithms. Figure 10 shows a plot ofprocessing time for
buffering with ordered cells and cutoffs and for buffering with graphics hardware,
applied to a typical fuzzy map. The horizontal axis shows thenumber of cells in
each row or column of the map, rather than the total number of cells of the map,
and therefore a linear curve indicates quadratic processing time.

7 Conclusion

The idea of using fuzzy set theory to handle imprecision in spatial reasoning is
not new (Altmann, 1994), and compared to other approaches our way of defining
buffer operations in GIS might look like a step backwards. However, our more
rigid way of looking at buffering of fuzzy maps has two advantages. Firstly, it
allows us to apply algorithms that are practically more efficient than brute-force
buffering, owing to restricting re-calculations of cell membership grades to can-
didates for potential value changes. And secondly, it enables us to implement a
particular brute-force variant of buffering on widely-available special hardware.



BUFFERING FUZZY MAPS IN GIS221

Acknowledgement

Many thanks to Damien Duff, who performed the evaluation of the algorithms and
provided some of the illustrations used in this paper.

References

Altmann, D. (1994). Fuzzy set-theoretic approaches for handling imprecision in
spatial analysis.International Journal of Geographical Information Systems,
8,271–289.

Bloch, I. (2000). Spatial representation of spatial relationship knowledge. In
Proceedings of KR-00 (pp. 247–258). Colorado: Breckenridge.

Brimicombe, A. (1997). A universal translator of linguistic hedges for the han-
dling of uncertainty and fitness-of-use in GIS. In Kemp, Z. (Ed.), Innovations
in GIS 4. (pp 115–126). London, England: Taylor and Francis.

Coppock, J. and Rhind, D. (1991). The history of GIS. In Maguire, D., Goodchild,
M., and Rhind, D., (Eds.),Geographical information systems: Principles and
applications (pp. 21–43). Essex, England: Longman Scientific & Technical.

Driankov, D., Hellendoorn, H., and Reinfrank, M. (1996).An Introduction to
Fuzzy Control 2nd edition. Berlin, Germany: Springer.

Duff, D. and Guesgen, H. (2002). An evaluation of buffering algorithms in fuzzy
GISs. InProceedings of The International Conference on Geographic Infor-
mation Science (GIScience-02). (pp 80–92). Boulder, Colarado: Springer.

Egenhofer, M. and Golledge, R. (1997).Spatial and temporal reasoning in geo-
graphic information systems. New York: Oxford University Press.

Frank, A. (1994). Qualitative temporal reasoning in GIS-ordered time scales. In
Proceedings of SDH-94 (pp. 410–431). Edinburgh, Scotland.

Frank, A. (1996). Qualitative spatial reasoning: Cardinaldirections as an example.
International Journal of Geographical Information Systems, 10,269–290.

Guesgen, H. and Albrecht, J. (1998). Qualitative spatial reasoning with a fuzzy
distance operator. InProceedings of SDH-98. Vancouver, Canada.

Guesgen, H. and Hertzberg, J. (2000a). Buffering in fuzzy geographic information
systems. InProceedings of International Conference on Geographic Informa-
tion Science (GIScience-00) (pp. 189–192). Savannah, Georgia.

Guesgen, H. and Hertzberg, J. (2000b). Buffering in fuzzy geographic information
systems. GMD Report 105, GMD. St. Augustin, Germany.

Guesgen, H. and Hertzberg, J. (2001). Algorithms for buffering fuzzy raster maps.
In Proceedings of FLAIRS-01 (pp. 542–546). Key West, Florida.



222 GUESGEN, HERTZBERG, LOBB, MANTLER

Guesgen, H., Hertzberg, J., Lobb, R., and Mantler, A. (2001). First steps to-
wards buffering fuzzy maps with graphics hardware. InProceedings of FOIS-
01 Workshop on Spatial Vagueness, Uncertainty and Granularity (SVUG-01).
Ogunquit, Maine.

Guesgen, H. and Histed, J. (1996). Towards qualitative spatial reasoning in geo-
graphic information systems. InProceedings of AAAI-96 Workshop on Spatial
and Temporal Reasoning (pp. 39–46). Portland, Oregon.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. (1999). Fast computa-
tion of generalized Voronoi diagrams using graphics hardware. InProceedings
of SIGGRAPH-99 (pp. 277–286). Los Angeles, California.

Molenaar, M. (1996). The extensional uncertainty of spatial objects. InProceed-
ings of SDH-96 (pp. 9B.1–13). Delft, The Netherlands.

Mustafa, N., Koutsofios, E., Krishnan, S., and Venkatasubramanian, S. (2001).
Hardware-assisted view-dependent map simplification. InProceedings of The
17th ACM Symposium on Computational Geometry. (pp 50–59). Medford,
Massachusetts.

Peuquet, D. (1994). It’s about time: A conceptual frameworkfor the representa-
tion of temporal dynamics in geographic information systems. Annals of the
Association of American Geographers, 84,441–461.

Plewe, B. (1997). A representation-oriented taxonomy of gradation. In Hirtle,
S. and Frank, A. (Eds.),Spatial information theory: A theoretical basis for
GIS, COSIT’97, Vol. 1329 Lecture Notes in Computer Science (pp.121–136).
Berlin, Germany: Springer.

Scott, D. (1992).Multivariate density estimation: Theory, practice, and visual-
ization. Chichester, England: John Wiley & Sons.

Sinton, E. (1978). The inherent structure of information asa constraint to analysis:
Mapped thematic data as a case study. In Dutton, G. (Ed.),Harvard papers
on geographic information systems Vol. 6. Reading, Massachusetts: Addison-
Wesley.

Usery, L. (1996). A conceptual framework and fuzzy set implementation for ge-
ographic features. In Burrough, P. and Frank, A. (Eds.),Geographical objects
with indeterminate boundaries, GISDATA Series No. 2 (pp. 71–85). London,
England: Taylor and Francis.

Zadeh, L. (1965). Fuzzy sets.Information and Control, 8,338–353.


