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In this paper, we show how standard GIS operations like timepbament,
union, intersection, and buffering of maps can be made mexibfe by
using fuzzy set theory. In particular, we present a varidtalgorithms
for operations on fuzzy raster maps, focusing on buffer aipens for
such maps. Furthermore, we show how widely-available specirpose
hardware (in particular, z-buffering in graphics hardwasan be used for
supporting buffer operations in fuzzy geographic inforiorasystems (GIS).
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1 Introduction

Geographic information systems (GIS) have been in use fite guwhile now
(Coppock and Rhind, 1991), but their functionality has ajehonly little over
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the years. In spite of being callegographic, GIS have so far been mostly ge-
ometric in nature, ignoring the temporal, thematic, anditatave dimensions of
geographic features (Molenaar, 1996; Sinton, 1978; U4686). There are, how-
ever, several attempts to overcome these limitations amttoporate qualitative
(Egenhofer and Golledge, 1997; Frank, 1994; Frank, 1996pret, 1994) or
fuzzy aspects (Altmann, 1994; Brimicombe, 1997; Molen4886; Plewe, 1997)
in GIS. This paper focuses on the latter aspect, extendings W@t has been
published previously (Guesgen and Hertzberg, 2000a; @uneagd Hertzberg,
2000b; Guesgen and Hertzberg, 2001; Guesgen et al., 2001).

An essential operation in GIS is map overlay, where new mapsa@mputed
from existing ones by applying eithér:

o Buffer operations, which increase the size of an object lgreking its
boundary, or

e Set operations, such as complement, union, and intergectio

In traditional GIS, these operations are exact quantgabperations. Humans,
however, often prefer a qualitative operation over an egaantitative one, which
can be achieved by extending the standard map overlay apesad fuzzy maps
and using fuzzy logic rather than crisp logic.

Consider, for example the simple raster maps in Figure 1.fif$taeow shows
raster maps for the location of roads (a-i), the location afew (a-ii), locations
of residences (a-iii), and the location of native foresivjiain a fictional region.
The second row is an illustration of crisp buffering opera$. It contains raster
maps illustrating roads buffered by 200m (b-i), rivers buéd by 400m (b-ii),
residences buffered by 200m (b-iii), and unbuffered ndtivest areas (b-iv). The
third row shows the result of fuzzy buffering operationsa® close to roads, ob-
tained with a cone buffer function (Guesgen et al., 2001)adfius 400m (c-i),
areas close to rivers, obtained with a cone buffer functioradius 800m (c-ii),
areas close to residences, obtained with an inverse-destarifer function (c-iii),
and a probability density distribution (Scott, 1992) basedhe recorded location
of native forest, obtained with a 50m-radius gaussianitligion (c-iv). Dark ar-
eas are areas of high membership, while light areas are tfid®e membership.

The last row illustrates how the fuzzy maps can be combinefihtbareas
close to roads, not close to rivers or residences, and noativerforest. Such
areas might be required for an industrial development, fan®le. The boolean
classification of the crisp map (d-i) would generally be mmdess useful for de-
cision making than the fuzzy map (d-ii), in which darkness.(ithe membership
grade) increases with suitability. The 3D membership serflustration (d-iii)
provides an alternative view of the fuzzy map (d-ii). Hehes membership grade

1A more detailed introduction to these operations can be faiselhere (Guesgen and Histed,
1996).
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Figure 1. An illustration of buffering in a fuzzy GIS (Duff and Guesg&902).
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is represented by terrain height rather than greyscalectwiliirrelevant in this
illustration).

The rest of this paper is organized as follows. We start withief review of
fuzzy maps and the definition of set operations for fuzzy spapmore detailed
introduction can be found elsewhere (Guesgen and Albr&é88). We then con-
tinue with the introduction of various algorithms for buffeg fuzzy maps, which
is an extension of previously published work (Guesgen andzHerg, 2000a).
Finally, we show how graphics hardware can be used to impiem&fering al-
gorithms more efficiently.

2 Fuzzifying Maps

In the following, we restrict ourselves to raster-based sn&uch a map consists
of a grid of cells whose values specify certain attributeshef locations repre-
sented by the map. In the simplest case, the cell values siricted to 0 and
1, where 0 signals the absence and 1 the presence of a cettddate, like the
attribute of a location being part of a road, waterway, ressil area, commercial
area, rural area, etc.

In some cases there is a crisp boundary between locationbdta a certain
attribute and those that do not have that attribute, bundftés is not the case.
For example, it is not always clear where a rural area stogsaaesidential area
starts, or where a forest is not a forest any more. To catahfefact, we extend
the range of cell values from the ét 1} to the interval0, 1], and thereby convert
a regular raster map into a fuzzy raster map. Given d @ethe fuzzy raster map,
(1) € [0, 1] indicates the degree to whi¢thas the attribute represented by the
map. The function(l) is called the membership function of the fuzzy raster map.

Performing a set operation (complement, union, and intds® on fuzzy
raster maps is straightforward. There are several ways fofidg the comple-
ment, union, and intersection of membership functionsgiikov et al., 1996),
but they all have in common that they are defined cell-wiseafbcells L in the
fuzzy raster map. In the case of the original max/min schefaddh, 1965), the
membership functions for the complement, union, and ietgign are defined
as follows, wherg:; andp, denote the membership functions of the underlying
maps angz the one of the resulting map:

Complement: VI € L: us(l) =1— pi(l)
Union: Vie L: ps(l) =max{pi (1), p2(1)}
Intersection: VI € L : ps(l) = min{uq (1), po(1)}

Since the membership functions for the complement, uniod, iatersection
are defined cell-wise, an algorithm for performing a setrapien on fuzzy raster
maps can just iterate through the set of cells and computevavakie for each
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cell based on the given value(s) for that cell, which meaasathorithm is linear
in the number of cells, i.e, its complexity d3(|L|).

3 lterative Buffering of Fuzzy Maps

Unlike the set operations, buffer operations cannot benddficell-wise. To de-
termine the new value of a cdllin a crisp raster map, the values of all cells in
the neighborhood dfare considered. If at least one of these values is 1, then the
value ofl is changed to 1; otherwise it remains unchanged. In othedsydhe
new value of is the maximum of the original value é&ind the values of all cells
in the neighborhood of. A fuzzy raster map can be buffered crisply in a similar
way: the value of is changed to the maximum fuzzy value in the neighborhood
of [, which might be any value from the intervl 1] (rather than the s€i, 1}).

Although buffering a fuzzy raster map as indicated abovehinig of use for
many applications, we do not want to restrict ourselvesigpdsuffer operations
for fuzzy raster maps. Rather, we want the buffer operatiodepend on the
proximity of the cells under consideration. For examplé¢hére is an area on the
map with very high membership grades, then the buffer omerahould assign
high membership grades to cells that are very close to tkeat, anedium high
membership grades to cells close to the areas, and low mehipgrades to cells
further away.

One way to achieve this behavior is to determine the direighhers of a cell
and to apply a buffer function to determine the new membprghide of these
neighbors. There are two types of direct neighbors:

e Edge-adjacent (4-adjacent) neighbors, or edge neighloorshiort. Two
cells of the grid are edge neighbors if and only if they haveedge in
common.

e \ertex-adjacent (8-adjacent) neighbors, or vertex neaghbor short. Two
cells of the grid are vertex neighbors, if and only if they davvertex in
common.

A buffer function is a monotonically increasing functign [0, 1] — [0, 1] whose
value never exceeds its input:

Ym € [0,1] : B(m) <m

An example of a simple buffer function [&m) = max{0,m — 0.1}.

If Iy is a neighbor of;, then the new membership gradelofis determined
by the maximum of the old membership gradel ofind the value of the buffer
function applied to the membership gradd of

p(ly) « max{p(l), B(p(lo))}
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Brute-Force g-Buffering

Let 4 be the membership function of the map.

Let 3 be a buffer function.

Let L be the set of all cells in the map to be buffered.
Repeat untils is stable:

For eachy € L do:
For all neighbors; of I, do:

p(ls) — max{u(l;), B(u(lo))}

Figure 2. A brute-force algorithm fo-buffering raster fuzzy maps.

Since updating the membership gradé,afan have an impact on the membership
grades of the neighbors &f, the update process has to be repeated for all cells of
the map over and over again until a stable situation is obthiin the following,

we refer to the process of buffering a fuzzy raster map, uaibgffer functions

as defined above, aterative buffering, or g-buffering.

A brute-force algorithm for3-buffering is shown in Figure 2. The algorithm
visits each cell of the map and updates its membership graskedon the mem-
bership grades of the neighboring céllslf any of the membership grades is
changed, the algorithm repeats the updating process Ulintiembership grades
become stable. More precisely, the algorithm applies tliiebfunction g to the
membership gradg(ly) of a celll, and uses the result to update the membership
grades of the four edge neighbors, or the eight vertex neighbfi,, respectively.
Since the maximum operator is commutative and associdtieegrder in which
the cells are updated does not have an impact on the findt mdghe updating
process.

Since the algorithm revisits each cell when repeating tliatipg process, even
the ones whose neighbors have not been changed in the étgaation, it per-
forms many unnecessary checks. An improved approach isej tkack of the
changed cells and to revisit a cell only if at least one of #ghbors has been
changed. The algorithm in Figure 3 achieves this by applitiegorinciple of lo-
cal propagation: the membership grade of a cell is propddatthe neighbors of
the cell, which are then put on to the list of cells to be viitethe future.

The local propagation algorithm is guaranteed to terminsitece the value of
the buffer function never exceeds its input, we cannot gethaset of updates.

2The membership grades of the neighboring cells are lower sfamdhe new membership grade.
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(-Buffering by L ocal Propagation

Let u, 5, andL be defined as before (Figure 2).
While L # 0 do:

Selectly € L.

L — L—{lo}

For all neighbors; of iy do:

(li) = max{u(l;), B(u(lo))}
If u(l;) has changed, theh — L U {l;}

Figure 3. A local propagation algorithm faB-buffering fuzzy raster maps.

At worst, a single cell can receiyé| — 1 updates, which correspond to paths of
updates originating at each of the other cells in the magsdAbte that a path of
updates cannot be longer thegij — 1 cells.)

Although the propagation algorithm is guaranteed to teatenit can be rather
inefficient: many cells may be revisited repeatedly asrtheembership grades
are overwritten by successively larger values. To preveistftom happening,
we can select a celp from L with a maximum membership grade. The grade
for |y cannot be increased by any buffer operatitim:), sinceg(m) < m for
all m € [0, 1], which means that the current gradelgis the final membership
grade for that cell. Since the membership gradé&,a$ both final and maximal,
buffering the neighbors df) results in assigning a final membership grade to the
neighbors of, as well. This means that none of the neighbors have to bateslis
The improved algorithm is shown in Figure 4.

4 From lterative Buffering to Global Buffering

So far, our discussion of algorithms revolved about a bitfaction 5. Although
propagating the result of locally through a fuzzy raster map is a reasonable
way to buffer such a map, it is not ideal for global effectacsithe membership
grade of a cell is determined by its original membership graad the grade of its
immediate neighbors, but not by the membership grade of figther away from
the cell under consideration. To achieve a more global gffez replaces with a
global buffer (or proximity) function) that is applied not only to the membership
grades of the neighbors of a given cgllbut potentially to any cell in the map.
The functiom) has two arguments, one of whichyi$l,), the membership grade
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(O-Buffering with Ordered Cells

Let i, 5, andL be defined as before (Figure 2).
While L # 0 do:
Selectly € L such thaiu(ly) is maximal inL.
L — L—{lo}
For all neighbors; of iy do:
pulls) = max{p(l), B(u(lo))}

Figure 4. An algorithm for3-buffering fuzzy maps using ordered cells.

of [y, and the other is(l, ly), the distance betweérand!,, which can be defined
as follows:

1. 5(lo,1g) = 0

2.V #£1p:
d(1,1p) = min{d(I’,lp) | I’ neighbor ofl)} + 1

We requirey to be monotonically increasing in the first argument, ithe
larger the membership grade &Qf the larger the value af, and monotonically
decreasing in the second argument, i.e., the further dwsafrom [y, the smaller
the value ofyy. We further require that the value ¢fnever exceeds the value of
the first argument:

VYm € [0,1] andVd € [0,00) : ¢(m,d) < m 1)
The update of a membership grade is computed in a similar wagfore:

pu(l) — max{pu(l), ¥(u(lo), 6(1, 1o)) }

In addition, we have to ensure that the resulting membergtades are intu-
itively plausible. In particular, we want to avoid havingarél effect override a
more global one if they originate in the same cell. For exanila celll, has
a distance of 1 to a cel} and a distance of 2 to a céll, theny (¢ (u(l2),1),1)
should not exceeg((l2), 2), i.e., the new membership gradelgis influenced
by the membership grade &f directly rather than the propagation of that mem-
bership froml, throughl; to [y. We can enforce this property by requiring:

Vim € [0, 1] and¥do, dy, s € [0, 50) : 2)
dy = di 4+ do = Y(m,dz) > Y (p(m,dy1),do)
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Figure 5. A raster map with its original fuzzy membership grades antiffered

version. Greyscale shades indicate membership grades. it& wilcle in the

buffered map denotes a cell that received its membershiegiaectly or indi-

rectly from the circled cell in the original map. Where two mmership grades
overlap, a larger value has precedence over a smaller one.

The buffer functiony(m, d) = {75, for example, satisfies this criterion, whereas
Y(m,d) = {4 does not.

If we require equality instead of inequality in Formula (2Je achieve the
same effect as with the functiof as introduced in Section 3. th(m,ds) =
Y(¢¥(m,dy),dp), then the new membership grade of a ¢eliith distanced from
cell [ can be computed by applying successively to the membership grade of

lo, i.e., by defining3(m) = ¢ (m, 1):
p(l) = max{p(l), p(¥(. .. P(ullo), 1)), 1)}

~—
d

Figure 5 shows a fuzzy map being buffered, usirign, d) = 115 as the prox-
imity function and using a distance measure based on vedfjexency. The orig-
inal map has only membership grades of O (unfilled whites3eéixcept for: (A)
the filled black cells on the right of the map, which have a rhership grade of
1 and (B) the single dark grey cell with a circle, which has anbership grade
of é An interesting effect occurs at the cell with the grid in tvig 5. This cell
is closer to the single cell of Object B than to any cell in @bj&. However, the
effect of buffering Object A overtakes the effect of buffegiObject B due to the
larger membership grade of Object A:

P(5.3)=5 < ¥(1,6)=1

A brute-force algorithm for global buffering (also refedrio asy-buffering)
a fuzzy map using a global buffer functiah can be obtained by extending the
update operations in the algorithm of Figure 2 to all celthmmap. The resulting
algorithm is shown in Figure 6. The algorithm repeatedlyaites through the set
of cells, using the membership grades of a cell to update #mahership grades of
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Brute-Force ¢-Buffering

Let 4 be the membership function of the map.

Let ¢ be a global buffer function.

Let L be the set of all cells in the map to be buffered.
Repeat untils is stable:

For eachy € L do:
Foralll e L — {iy} do:

(1) = max{p(l), ¥ (u(lo),0(1,10))}

Figure 6. A brute-force algorithm for)-buffering fuzzy raster maps.

the other cells. This is done regardless of whether the meshigegrade of a cell
can possibly have an effect on other cells or not. An impraxeimnan be achieved
by using only those cells that have the potential to inflgeather cells. This is
the case if the current membership grade of the cell is noinmaihand was not
derived from the membership grade of another cell throudfebng. Cells with
minimal membership grade cannot increase the membershie @f another cell
during buffering, because the buffer operation alwaysrnsta value smaller than
or equal to the membership grade of the cell that is used asmemngt of the buffer
operation (cf. Formula (1)). A cell whose membership grade derived from the
membership grade of another cell through buffering canraenany contribution
because the other cell has spread its influence to all celleeamap already, and
since global effects dominate local ones (cf. Formula (B¥ current membership
grade of the cell under consideration does not have anyiadditeffect.

Figure 7 shows an improved algorithm, which restricts thieoloop to the set
of cells that might have an influence on other cells. Inliiethis set contains alll
cells of the map. However, when a cell is detected whose meshipegrade is
updated through a buffer operation, the cell that was updateemoved from the
set of influential cells, because it won't have any effectlmmmembership grades
of other cells in a future iteration. In addition to that, tbells to be buffered
are selected according to their membership grades. Celislavge membership
grades are more likely to cause a cutoff than those with emgihdes. It therefore
makes sense to consider cells with large membership grades f



BUFFERING FUZZY MAPS IN GIS 217

-Buffering with Ordered Cellsand Cutoffs

Let u, v, andL be defined as before (Figure 6).
L' — L —{l] p(l) is minimal inL}
While L’ # () do:
Selectly € L' such thafu(ly) is maximal inL’.
L' — L' —{lo}
Foralll € L — {ly} do:

p(l) = max{pu(l), ¥ (p(lo), 6(1, o))}
If (1) has changed, thelf — L' — {i}

Figure 7. An algorithm fori)-buffering fuzzy raster maps using ordered cells and
cutoffs.

5 Using Graphics Hardware for Buffering

So far, we have focussed on improving buffering by applyiagous software
techniques and heuristics. In the rest of this paper, wetaaldjfferent course:
we describe an implementation of the brute-force algorithat is efficient be-
cause we use special-purpose hardware. Since a fuzzy mapecdawed as a
two-dimensional pixel image in which the colors represastdifferent member-
ship grades of the fuzzy map, it is not surprising that tegh@s from the area of
computer graphics can be used to buffer fuzzy maps moreezfflg. (Hoff et al.,
1999) suggest using graphics hardware to compute geregtalaronoi diagrams.
(Mustafa et al., 2001) use hardware generated Voronoi aags the basis for
map simplification. We also adapt the idea of (Hoff et al.99Pand will show
how such hardware (in particular, the z-buffer of the hamdyaan be used to
buffer fuzzy maps.

The z-buffer (or depth buffer) is similar to the frame bufferthat it stores
information for each pixel of the image. The value storedhia z-buffer is the
depth of the closest object found so far that covers that.pRefore a pixel is
given the color of a new object, the depth of the object at plaaticular pixel is
computed and compared with the depth stored in the z-bufféne new object
is closer, its color will be stored in the frame buffer anddegpth value in the
z-buffer. Figure 8 shows this approach in algorithmic form.

In the context of buffering fuzzy maps, we use the z-buffentmic the current
fuzzy map, i.e., we take the depflily) of a given pixell, to uniquely represent
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Z-Buffer Algorithm

Let L be the set of pixels of the image.
Let ¢(1) be the value of the z-buffer for the pixeE L.
Let 7 (1) be the value of the frame buffer for the pixet L.
Let O be the set of objects to be rendered.
For allo € O do:

For each € L covered by do:

Let z be the depth o at!.
Let p be the color ob atl.
If z < (1), then do:

() — =

m(l) —p

Figure 8. An algorithm showing the use of the z-buffer in graphics kaance.

the membership grade(ly). A close depth indicates a high membership grade,
whereas a far depth stands for a low membership grade.

To buffer the membership grade represented by the deptlegfixiel, we ren-
der an object that approximates the buffer functiompplied tou(l). If we restrict
ourselves to buffer functions of the typém, d) = max{0, m —kd}, wherek de-
termines how fast the original membershipdiminishes with the distancé the
object to be rendered is a right circular cone. Cones expaayg fiom the camera,
and thus the depth of the cone is determined @y = (1 — ¥ (u(lo), (1, 1))).
A membership grade of 1 is mapped to a depth of zero, and a nishipgrade
of 0 is mapped to a depth of 1. Note that it is possible to uderdifit values of
k within the same map to obtain different buffering effectstfee objects repre-
sented in the map. Beyond that, cones of a different shagenéoessarily with
constant slopes) can be used to model other buffer functions

To speed up the rendering process (i.e., to make the buff@riocess more
efficient), we approximate each buffering cone as a triaffigh, as shown in Fig-
ure 9. To further speed up the process, we suppress the immgeocess for
certain pixels, if there are regions with equivalued pixdls this case, we only
need cones from the boundary pixels.

As mentioned in Section 3, distance is sometimes definedgdridastructure
through neighborhood relationship. In the case of vertéghimrs, this means
that our buffer functiony can be represented by a cone with four triangles (i.e., a
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X
depth

Figure 9. {(I;) approximated by triangle fans.

pyramid) that is aligned parallel to the grid structure. e tase of edge neigh-
bors, this is also possible, but the pyramid is rotated byetiekes.

In general, we cannot guarantee the soundness of hardwHegity, as the
rendered objects are only approximations of the buffertiona).2 On the other
hand, there are experiments showing that fuzzy membershgeg are quite ro-
bust, which means that it is not necessary to have exact niehpgrades (Bloch,
2000). The explanation given for this observation is twofdirst, fuzzy mem-
bership grades are used to describe imprecise informatidrtterefore do not
have to be exact, and second, each individual fuzzy memipggsdde plays only
a minor role in the whole reasoning process, as it is usualtytined with several
other membership grades.

6 Evaluation of the Algorithms

The brute-force algorithm of Figure 6 iterates through teedf cells L, using

the membership grades of a cell to update the membershiggafdthe other
cells. Since this is done regardless of whether the memipegsfide of a cell can
have an effect on other cells or not, the algorithm has anageecomplexity of
O(|LJ?).

The improved algorithm of Figure 7 still has the worst-casetcomplexity of
O(|L|?), since it can happen that the algorithm does not change ampsrship
grade and therefore has to iterate through all cells of thyg Mhae time complexity
is bound from below by the time complexity of selecting cellghe order of their
membership grades. If the membership grades are disctetieettsorting can be
used to sort the list beforehand, which makes sorting amtt ey the cells linear;
otherwise, sorting and selectingG¥|L| - log |L|). In practice, the sorting time is
negligible and the quadratic properties of the algorithmniiate on most data.

The worst-case time complexity for buffering a fuzzy mamgsiraphics hard-
ware isO(|L|?) in general and)(|L|) for certain special cases (Duff and Guesgen,

3There are special cases where the result is identical witlotte obtained through the software
buffering algorithms (like the buffer functiop(m, d) = max{0, m — kd}, which corresponds to a
right circular cone).
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Figure 10. Processing time of buffering with ordered cells and cutgpifstted
against processing time of buffering using graphics hardwa

2002). In these cases, the graphics hardware method pearggmificantly better
than any of the software algorithms. Figure 10 shows a plpt@tessing time for
buffering with ordered cells and cutoffs and for bufferinglwgraphics hardware,
applied to a typical fuzzy map. The horizontal axis showsrtheber of cells in
each row or column of the map, rather than the total numbeelts of the map,
and therefore a linear curve indicates quadratic procgdsire.

7 Conclusion

The idea of using fuzzy set theory to handle imprecision itigpreasoning is
not new (Altmann, 1994), and compared to other approachesayof defining
buffer operations in GIS might look like a step backwards.wieeer, our more
rigid way of looking at buffering of fuzzy maps has two adwages. Firstly, it
allows us to apply algorithms that are practically morecéint than brute-force
buffering, owing to restricting re-calculations of cell mbership grades to can-
didates for potential value changes. And secondly, it essabt to implement a
particular brute-force variant of buffering on widely-dahle special hardware.
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