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Abstract. In this paper we show that it is possible to extend a mobile indoor service robot, making it capable of

performing autonomous transportation tasks in outdoor environments. While the higher-level software (like planners,

schedulers and collision avoidance) is no di�erent than that used in indoor vehicles and therefore both well known

and reliable, the sensor fusion layer is the challenging part due to the extreme ambiguity of sensor data outside most

buildings. Therefore we focus on the self-localization aspect of the system, showing that it is possible to predict the

robot's position with such low uncertainty that a typical transportation task in an industrial outdoor environment can

be performed quickly, safely and robustly. We rely only on low cost o�-the-shelf sensors (optical encoder, �ber-optical

gyroscope and a laser range �nder), without adjusting the robot's environment (e.g. by way of addition of arti�cial

landmarks), making the system a�ordable and easy to maintain. We prove the usability of our approach through

extensive tests with a real robot around our institute campus. Test drives totalling over 20km show that it is possible

to �nd and traverse a target door in over 99% of all cases.

1 Introduction

In contrast to the many systems that exist for localizing a robot in indoor environments, few systems deal

with this problem in outdoor environments. In most cases, like in autonomous street vehicles [DG88, TLR99],

the localization capabilities do not need to be so precise as is needed by an autonomous service robot, which

requires the ability to navigate reliably with a maximum positioning error of a few centimeters, or at least

recognize when its uncertainty exceeds an upper bound. The existing systems that meet the aforementioned

requirements fail to meet the requirements of an industry-related market, like being a�ordable and functional

even in non-optimal environments that can be dirty, with uneven or slippery surfaces or with suboptimal

sight caused by fog, rain, bright lights or darkness. In many cases the use of arti�cial landmarks provide a

higher accuracy, but they are often impractical, costly to install and maintain, un
exible and hard to extend.

In this paper summarizes the main results from [Has00]. It presents an approach that proposes to �ll this

gap, using a set of o�-the-shelf sensors (optical encoders, �ber-optical gyroscope and a laser scanner) and

a vectorized map of the environment like those that are often available in most facility administrations or

that can be bought from the local survey oÆce (in Germany: \ALK\, allgemeine Liegenschaftskarten).

The general conditions for this approach are given by typical industrial transportation tasks: a robot

leaves a building at a given point (a door), travels on a user-de�ned \virtual\ track, which is not necessarily

visible, to its target destination, and then enters a building through a prede�ned door. This re-entry door

can be the same door through which the robot left, or a di�erent one. On this path, the inaccuracy of the

robot's position must remain below a given upper bound. If the inaccuracy exceeds the bound, the robot

must detect the failure and react accordingly, such as stopping immediately.

The approach can be divided roughly into two steps, the �rst being fusion of the inertial sensors, the

encoders and the �ber-optical gyroscope, with a Kalman �lter. This provides a �rst position estimate together

with a measure of its uncertainty. A second stage then tries to minimize this uncertainty using the data

delivered by a feature extraction stage operating on the laser scanner data and the map.
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This paper is organised as follows. After introducing the robot platform and area used for testing the

presented algorithm, we will present the localization algorithm in detail, followed by empirical results that

prove its eÆciency and usability. Finally, we summarize our results.

2 The Robot Platform and Test Area

The robot used for testing our algorithm (�g. 1) is a prototype manufactured byDaum and Partner, Germany.

It is a 200kg rear-wheel driven vehicle with ackerman steering, equipped with incremental encoders on the

passive front wheels and an absolute encoder providing the steering angle. The front laser scanner provides

180Æ scans with a resolution of 0.5Æ and is required to satisfy the safety regulation of the German Technischen
�Uberwachungsverein, T �UV. A �beroptical gyroskope and a DGPS receiver complete the sensor set.

The data are processed by a PC/104 size Pentium 166MHZ computer equipped with digital, analog and

canbus io-cards for acessing the robots hardware and sensors. A netlink for sending status information was

provided by a wireless ethernet.

The test drives were run on our institute campus (�g. 2). We used three di�erent tracks of 50m, 250m

and 520m. They includes di�erent kind of surfaces, like pave, sand, mud, bumps and acclivities and di�erent

kinds of environmental structures, including non-regular surfaces like bushes, trees and parked cars.

The map seen in �g. 2 is part of a ALK,allgemeine Liegenschaftskarten, which can be bought from the

local survey oÆce. These maps can directly be used by the system to de�ne virtual tracks for the robot.

Fig. 1. Robot used: The prototype \Handycart\, manufactured by Daum and Partner, Germany.

3 The Localization Algorithm

The algorithm consists of two main steps, which will now explained in detail. In the �rst step, the data from

the inertial sensors (the encoders, and the optical gyroscope) is merged in a preprocessing step and then fed

into a Kalman �lter.

The resulting position estimate is then improved by a second step, where a feature extraction on the laser

scanner data is performed. The obtained features (namely, the position of doors and the main orientation of

walls) are then compared to a map and used to reduce the uncertainty of the �rst step.



Fig. 2. Part of our campus with virtual tracks used for testing our approach. Track lenghts are 50m, 250m

and 520m

Both steps are now explained in detail:

3.1 Fusing the Inertial Sensors

Of course, all the inertial sensor data could be merged by simply putting them into a Kalman �lter [GBF98],

but our experiments show that a deterministic approach can do better. Because of the high weight of the

robot and the positioning of the encoders on the passive front wheels it is impossible that both steering wheels

are a�ected by slippage. This assumption is proven by our experiments. In the case of no measurement error,

the measured change of the robot's orientation vector will be the same using the gyroscope as that of the

encoder values. In the case of wheel slippage or bumps, where the odometric data imply a wrong change

of orientation, these values di�er signi�cantly (�g. 3), because the gyroscope is una�ected by mechanical

shocks.

This e�ect allows not only to detect odometric measurement errors, but also the sign of the di�erence

indicates which wheel is a�ected by slippage and therefore produced the wrong measurements. We then use

an alternative calculation of the new position, getting the change in orientation from the gyroscope and the

distance information from the one correct wheel encoder.

This is possible because, as our experiments show, the weight of the robot and the wheel encoders

mounted on the passive wheels prevent the slippage of both wheels at once. Therefore using this technique,

we eliminate the disadvantages of both the gyroscope (the high drift) and the wheel encoders (sensitivity to

slipperage), resulting in a signi�cant increase in position accuracy in comparison to the Kalman �lter-only

solution (�g. 4).

Borenstein and Feng [BF96] have called such fusion of gyroscopic and odometric data gyrodometry. They

have reported a similar increase in robustness for pose estimation from this fusion like we have found. In

particular, they have also reported the ability of gyrodometric position estimation to recover from non-

systematic errors induced by slippage and bumps.

We also tried using a di�erential GPS, merging its data at this point with preprocessed data from the

�rst step described above, but it turned out that there is no noticeable increase in positioning accuracy. The

DGPS data turned out to have a too high variation for improving the uncertainty of any estimation. The

main reason for this lies most likely in the multiple re
exion of the satelite signals against the walls of the

surrounding buildings.

3.2 Reducing the Uncertainty

To improve the position estimate, we now extract the position of potentially existing doors and of the main

wall orientation out of the laser scan data.
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Fig. 3. Di�erence between the change of the orientation vector provided by the gyroscope and the wheel

encoders. (At dt=600, 1300 and 2050 the robot traversed bumps in the surface!)

The doors are detected using a modi�ed Hough Transformation [Dav90, IK88], which detects \line-

breaks\ of a certain length rather than line segments. If a door is visible in a scan, it is detected in 98% of

all individual scans using this algorithm. The algorithm is capable of processing at least 5 scans per second

(of 180Æ each with 361 dots per scan). Because of this fast processing of scans it is possible to detect every

visible door while travelling by.

Using the measured position of the door relative to the robot, its current position estimate and its

uncertainty provided by the Kalman �lter, it is easy to determine which door in the map corresponds to

the detected one. In our scenario we can only allow measurement errors that are much smaller than the

distance between two doors, so every door can easily by determined by elementary geometric calculations.

Once knowing the relative position of the door to the robot and its exact position from the map now makes

it a trivial thing to recalculate the absolute position of the robot and use this information for a position

update in the Kalman �lter.

The main wall orientation is calculated using angle histograms, which are almost translation-invariant

under the assumption of only small positioning errors[WWP94]. Like doors, outside walls are not always

visible, and so only those histogram peaks in the list that provide a signi�cant height above the histogram

average are taken into account. This indicates that a wall in sight is of a length \worth being considered\.

Once we have a main wall orientation, we extract the same value out of the map under the assumption of

our current position estimate. We then compare the two values and calculate a correction of the orientation

vector.

This of course corrects the orientation error only. The robot has possibly been travelling with this error

for a couple of meters, so the system maintains a queue of limited size, storing the position update of the

last 10 meters (a value that can be adjusted according to the memory available). After we get the correction,

we track this error back and get again a correction of the position.

It turns out that this feature is especially useful in the correction of a priori errors in the orientation

vector when leaving the building. Of course, when the robot switches from indoor to outdoor navigation, it

has to start with an initial position, which is determined by the door position and the robot's angle relative

to the walls. Clearly, these values are never exact. The angle histogram approach turns out to be useful in

limiting the error resulting from this source.

Guivant et al. [GNB00] report a similar use of laser range data for outdoor navigation. Their approach

is more general than ours in that they make use of the laser intensity data in addition to the range data for
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Fig. 4. Positioning error provided from di�erent methods of fusing odometric and gyroscopic data. Measure-

ments are plotted only every 10m for sake of readability

discriminating landmarks (which may include arti�cial beacons); moreover, their approach is also intended

for map building. Yet, it di�ers from ours in a number of important details that are due to di�erences in

the target applications. We presume to navigate in the vicinity of buildings, like in factory yards or institute

campuses. Therefore, we must expect some dynamicity of the environment, like humans or cars or other

mobile objects, blocking temporarily landmarks. Using the known geometry of the buildings, including line

segments, corners, and doors, for uncertainty reduction in the various ways just presented, proves to be

eÆcient. Together with the gyrometric position estimation, it suÆces to perform robust drives, including

door-to-door missions, as will be seen in the next section.

4 Experimental Results

We have tested our approach in extensive drives around our institute campus. To accomplish this we choose

three di�erent paths (see 2), each of which contained di�erent surfaces (sand, holes, bumps, crushed stone,

mud, asphalt) and environmental structures, including non-regular surfaces like bushes, trees and parked

cars.

The main tests consisted of measuring how exact a given target point can be reached after travelling a

given distance. The results of these tests are shown in tab. 1 and �g. 5. As one can see, a transportation

task like described in the �rst chapter can be performed with such a high reliability that it satis�es most

application needs.

The precision of the positioning estimate depends of course on the landmarks detected in the environment.

We therefore measured the minimal and average travelling distance until reaching a given quadratic error in

the positioning estmate. We chose four error limits of 10cm, 30cm, 50cm and 100cm and performed 40 test

drives through environments providing a whide spectrum of di�erent environmental structures (�g. 2). The

results can be seen in tab. 2.

The second task was to leave a building through a door and re-enter a building through another door.

Again, between the doors there were three di�ent paths of 51m, 280m and 520m length (�g. 6). Like described

before, the doors allow additional corrections of the positioning error. Because of that, it is possible to �nd

and enter a door even with relativly high positioning errors. The results can be even better if the robot uses

a more sophisticated \door-searching-strategy\ which will be implemented shortly.
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travelling distance

50m 250m 520m

min(dx) -7.3 -48.4 -156.5

Extrema max(dx) 7.5 49.9 189.1

[cm] min(dy) -5.8 -39.1 -193.5

max(dy) 6.2 47.2 199.6

dx -0.3 -1.4 -5.9

dy 0.4 6.4 25.5
Mean

abs(dx) 4.6 25.3 101.2
[cm]

abs(dy) 3.2 22.8 91.1p
(dx2 + dy2) 5.8 36.8 147.0

dx 5.2 30.3 121.5

Standard- dy 3.8 26.5 104.2

deviation abs(dx) 2.1 15.8 63.3

[cm] abs(dy) 1.9 13.2 52.9p
(dx2 + dy2) 2.3 15.0 59.9

Table 1. Statistical examination of the positioning errors when travelling to a given target point. 25 drives

were carried out over each of 3 di�erent track lengths. The extrema, means and standard-devation of the

absolut error and the errors in x/y-direction are provided.

Positioning- Distance travelled(m)

error Min. Avg.

10cm 45.0 73.2

30cm 119.0 160.0

50cm 210.0 302.3

100cm 389.0 425.1

Table 2. Minimal and average travelling distance until exceeding a given quadratic error in the position

estimate
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5 Conclusion

We have shown that it is possible to extend an o�-the-shelf transportation robot platform with low-cost

standard sensors, thereby making it capable of performing transportation tasks indoors as well as outdoors.

The reliability and robustness of the system is very high. It is independent of visual conditions and

insensitive to the structure of the surface it is travelling on (as long as the robot is able to travel on them).

Even after longer drives, the system is still able to reliably localize and enter a target door. Finally, the

system keeps track of its own uncertainty, making it easy for higher level software to act accordingly if the

uncertainty of the position knowledge exceeds a given limit.

The system does not require changes in the environment in order to localize itself. It is therefore possible

for the user to de�ne a \virtual\ path of the robot , making the robot 
exible and the system easy to learn

and to maintain.

The results shown above can be improved using active-perception approaches, which will be implemented

shortly.
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