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Abstract

High-level symbolic representations of actions to con-
trol the working of autonomous robots are used in all
hybrid (reactive and deliberative) robot control architec-
tures. Abstract action representations serve several pur-
poses, such as structuring the control code, optimizing
the robot performance, and providing a basis for reason-
ing about future robot action.

The paper presents results about re-designing the RHINO

navigation system by introducing an HTN plan layer. Be-
sides yielding a more structured robot control software,
this layer is used as a basis for optimizing the navigation
performance by plan transformations. We show how a
robot can learn to select plan transformations based on
projections of its intended behavior. Our experimental
evaluation shows that the overall robot navigation perfor-
mance is increased by almost 42 % when using learned
projective models to select plan transformations.

1 Introduction

Abstract plan or task layers have been used in robot con-
trol since SHAKEY ’s times [17], and they are essential in
hybrid robot control architectures [15, 12]. In McDer-
mott’s terminology [14], a plan is that part of a robot
control program, which the robot cannot only execute,
but also reason about and manipulate. According to that
broad view, a plan may serve many purposes in a robot
control system: As [1] has it, ”the use of plans enables
these robots to flexibly interleave complex and interacting
tasks, exploit opportunities, quickly plan their courses of
action, and, if necessary, revise their intended activities”.

In this paper, we describe a technique for using a plan
layer in robot control for optimizing the performance in
robot navigation by learning from past navigation experi-
ence. We start with the well-known RHINO software [22],
building on top of it abstract navigation tasks from which
plans are generated and executed. We use HTNs [16] as
the plan format, as it allows standard plans to be gener-
ated very efficiently and makes it easy for the control sys-
tem programmer to express prior knowledge about pri-

orities and preferred decompositions of navigation tasks
under certain circumstances. Moreover, the hierarchical
nature of HTN plans makes them a handy substrate for
dealing with execution failure by jumping to higher levels
of abstraction within the current plan and pick alternative
task expansion strategies. This has been one of the rea-
sons for developing it for the archetype of HTN planners,
NOAH [19].

Based on the declarative representation of robot naviga-
tion in the HTN format, the expected action of the robot
on a given task can be projected into the future, allow-
ing its performance to be estimated and, wherever pos-
sible, to be improved if alternative courses of action are
available that can be chosen instead. This idea of plan
transformation is inspired by the work of Beetz and Mc-
Dermott [2]. As past experience from navigation tasks
can of course be accumulated, we end up in a life-long
learning framework in which the robot is able, based on
the navigation plan format, to improve its navigation per-
formance. Our results show performance improvements
of 42 % on average.

The remainder of this paper is organized as follows. In
the next section, we briefly recapitulate the RHINO navi-
gation system and discuss its major shortcomings. Then
we introduce – mostly by way of example – HTN plan-
ning and discuss how HTN planning can help to im-
prove the RHINO system. After that, the technical core
of the paper describes the procedure of optimizing navi-
gation performance using learning techniques. We finally
present empirical results of running the procedure, and
conclude.

2 The RHINO Navigation System

The RHINO navigation system is well known for two rea-
sons. First, its robust performance in two early tour-
guide projects in the Deutsches Museum in Bonn [6] and
the Smithsonian Institute in Washington D.C [21] and
second, the consequent application of probabilistic algo-
rithms to both map learning [22] and localization [8, 10].

Figure 1 depicts the main components of the RHINO sys-



Figure 1: Components of theRHINO system.

tem and their interaction. The localization component
tries to fit the sensor readings of a mobile robot into a
model (a grid map) of the robot’s working environment
to estimate the robot’s current position or pose within
the environment and reduce uncertainty caused by unre-
liable dead-reckoning. A robust self-localization can be
achieved using Bayes’ rule to integrate noisy odometry
information and noisy sensor information into a proba-
bility distribution of the robot’s current position or pose
within a known environment [8, 10]. The occupancy
grids of the environment needed for localization can be
learned [22]. While position tracking and navigation
planning can be done concurrently, sensing actions might
become necessary if the position uncertainty of the robot
becomes too high. Burgard et al. suggest an entropy-
based approach to compute sensing actions for active lo-
calization [7].

The navigation planning component receives goal points
from either a user interface, a task planner or – in the case
of active localization – from a localization component. It
generates a sequence of actions that can be executed by a
local reactive control component. In most systems, navi-
gation planning is considered as an instance of path plan-
ning [13]. However, RHINO’s navigation planner com-
putes navigation policies rather than paths. Navigation
policies are functions that assign a navigation action to
each (discrete) position or pose of the robot. From a nav-
igation policy, a path to the goal can be computed effi-
ciently for every state of the robot. This is advantageous
when the robot often deviates from its pre-planned path,
e.g. due to drift or unexpected obstacles. Thrun et al. pro-
pose to use a deterministic value iteration to compute a
navigation policy for a fine-grained two-dimensional oc-
cupancy grid map of the robot’s environment [22].

The local control component ensures a safe execution of
high-level navigation actions. It translates these actions
into sequences of motor control commands that can be
directly executed by the mobile robot. It guarantees a
safe navigation by reacting to unforeseen and dynamic
obstacles. The dynamic window approach to collision

avoidance [9] generates trajectories for local navigation
tasks based on simple models of the robot dynamics and
chooses the trajectories with the highest utility with re-
spect to some given evaluation function. A recent exten-
sion of this approach [4] combines the dynamic window
approach with local planning to compute a better evalua-
tion function.

As the local navigation component can fail to execute a
navigation action due to inaccurate motor control, un-
expected obstacles, and inherent limitations of the local
control component, the planning component should be
able to handle failures at execution time and plan for their
avoidance. We will introduce a symbolic navigation plan-
ner which can account for execution failures on both lev-
els. By projecting the execution costs of alternative plans,
the planning component can optimize the robot’s average
performance using plan transformations.

3 HTN Plans for Robot Navigation

The basis for the improvement of the robot’s performance
reported in the rest of this paper is the representation of
abstract navigation actions in terms of HTN (Hierarchi-
cal Transition Network) plans for robot navigation. By
introducing a plan layer into the robot control, we con-
tinue the rich tradition of hybrid robot control architec-
tures [15, 12].

HTN planning originates from early work by Sacerdoti
[19]. Since then, it has been used as a technique in several
domain-independent and special-purpose planners. Mile-
stones include the SIPE-2 system [23] and its various ap-
plications, as well as BridgeBaron [20], the winner of the
1997 computer bridge world championship. SHOP [16]
is a modern, domain-independent HTN planner incorpo-
rating the BridgeBaron design knowledge.

HTN planning specifies a planning problem as a task net-
work, i.e., a set of tasks together with constraints on the
order in which they can be performed and restrictions on
how variables may be bound. Tasks may beelementary,
i.e., executable by the robot (in our case), orcompound,
i.e., to be expanded into a task network. The expansion,
in general, is not unique. Planning is performed by ex-
panding compound tasks until only elementary tasks re-
main. The resulting network of elementary tasks is a so-
lution plan for the problem. In this paper, we use only
total-order task networks and ground instances of tasks,
handling linear propositional plans all the time. This sim-
plification does, of course, not apply to HTN planning in
general.

To introduce some terminology first, we callplan stuban
HTN with an elementary task as the first task in its order-
ing. The strategy of stopping to reduce elementary tasks
in an HTN as soon as a plan stub has been found, is called
thelazy expansion principle. This principle is used in our
case as the robot may start navigating even before a com-



plete solution plan has been found. The rationale is that
we cannot assume that no unforseen events occur during
plan execution (which would make plan suffixes unexe-
cutable or irrelevant) and that plans may include sensing
actions, the results of which may not be known at plan-
ning time. The lazy expansion principle reduces waste of
planning time in these cases.

To present an example, let us introduce the operator in-
ventory for our navigation planner. We have the follow-
ing schemata for elementary tasks:

SetTarget(x, y, d) sets the target point(x, y) for the low-
level routine for collision-free drive control, which
has to be approached up to a precision ofd cm.

TurnTo (x, y) causes the robot to rotate on the spot until
heading towards the point(x, y).

TurnToFree() causes the robot to rotate on the spot until
heading towards some free space.

MoveForward(d) causes the robot to move byd cm
straight forward.

MoveBackward(d) causes the robot to move byd cm
straight backward.

All elementary tasks must have an implementation in
terms of low-level control routines of the robot, so that
executing an elementary task means calling the respective
routine. That does, of course, not guarantee that each and
every elementary task instance, or its corresponding con-
trol routine, respectively, can be successfully executed.
Failure is possible, as usual. This issue will be addressed
below.

We have two types of compound tasks, the schemata of
which are:

ApproachPoint(x, y, d) drives the robot to position(x, y)
within an error radius ofd. In terms of the expansion
hierarchy,ApproachPoint is a middle-level task that
serves for dealing with self-generated intermediate
target points.

MDPgoto(x, y) drives the robot to the user-specified tar-
get point(x, y). It is the highest task in the expan-
sion hierarchy. Over the time, it gets expanded into
a sequence ofApproachPoint operators.

In the experiments, we consider the following expan-
sions. The taskMDPgoto(x, y) can be expanded into
ApproachPoint(tx, ty, c) with the target point(tx, ty) ei-
ther 2 m (default), 1 m or 4 m ahead on the optimal
path to the goal point(x, y) and with c=1 m, c=0.5 m,
or c=2 m respectively. ApproachPoint(x, y, d) is ei-
ther expanded intoSetTarget(x, y, d) (default), into the
sequenceTurnTo (x, y), SetTarget(x, y, d), into the se-
quenceMoveBackward(30), SetTarget(x, y, d), or into a

sequence ofTurnToFree, MoveForward, TurnTo , and
SetTarget.

Within a plan, aninstanceof any task has all arguments
fully instantiated, as we are dealing with purely propo-
sitional plans here. Moreover, all task instances have an
additional argument saying whether they arePENDING,
i.e., not yet executed (for elementary tasks) or expanded
(for compound tasks), orEXPANDED in the case of com-
pound tasks. Executed tasks are simply deleted from the
current plan.

Representing a plan as a stack, here is an exam-
ple. Assume the navigation target is the position
(1521.31, 1563.8) on some given floor map. This would
be transformed into the one-task plan

MDPgoto(1, PENDING, 1521.31, 1563.8)

where the first two arguments are the task instance ID
and the status, resp., and the following ones are like in
the task schema descriptions given above. (This pattern
will re-appear in all other task instances to follow.)

Dealing with the top task of the stack means expanding
it, in this case, since it is compound. Using the default
expansion, this yields

ApproachPoint(2, PENDING, 1434.38, 1009.38, 100)
MDPgoto(1, EXPANDED, 1521.31, 1563.8)

and, expanding theApproachPoint task,

SetTarget(3, PENDING, 1434.38, 1009.38, 100)
ApproachPoint(2, EXPANDED, 1434.38, 1009.38, 100)

MDPgoto(1, EXPANDED, 1521.31, 1563.8)

As the topmost task is elementary, this is a plan stub, and
according to the lazy expansion principle, this operator
gets immediately executed by the robot, causing a physi-
cal robot drive action.

Assuming that all goes well, the control routine imple-
menting theSetTarget task terminates successfully. This
task pops out, and so doesApproachPoint in consequence.
TheMDPgoto task, however, is not yet finished, as its tar-
get point is not yet reached according to the robot’s self-
localization. In consequence, it gets re-expanded, yield-
ing

ApproachPoint(4, PENDING, 1476.88, 1158.12, 100)
MDPgoto(1, EXPANDED, 1521.31, 1563.8)

the topmost task of which would get expanded into the
respectiveSetTarget task and executed as before. If all
keeps going well, this cycle of expand-execute-pop is
repeated until the final target point is reached and the
MDPgoto task pops out.

Failures to execute an elementary task are reported by the
low-level control routines by raising exceptions of differ-
ent types. Assume that executing the top task in the plan



SetTarget(5, PENDING, 1476.88, 1158.12, 100)
ApproachPoint(4, EXPANDED, 1476.88, 1158.12, 100)

MDPgoto(1, EXPANDED, 1521.31, 1563.8)

results in an exception of typeNO-ADMISSIBLE-
TRAJECTORY, i.e., the low-level execution cannot find
an unoccluded local path from the current position to
the point(1476.88, 1158.12), based on the recent sensor
readings. As a result, the failed task would pop out and
the next expansion alternative for theApproachPoint task
would be patched in, resulting in

MoveBackward(6, PENDING, 30)
SetTarget(7, PENDING, 1476.88, 1158.12, 100)

ApproachPoint(4, EXPANDED, 1476.88, 1158.12, 100)
MDPgoto(1, EXPANDED, 1521.31, 1563.8)

If this should fail again, there are more ways of expand-
ing ApproachPoint. Only if all expansion alternatives for
some compound task have been exhausted, there will be
backtracking in the tree of possible expansions, or, if no
more backtracking is possible, the execution of the main
task fails and permanent failure is reported.

The two examples demonstrate that the HTN framework
nicely supports the fast generation of default plans and
the handling of exceptions caused by unexpected obsta-
cles or inaccurate effectors. In addition, HTNs can be
used to optimize the robot’s navigation performance, that
is, to minimize the expected execution time. In some sit-
uations, for example, it might be advantageous for the
robot to turn to the target point before trying to approach
it. In other situations, e.g. in a wide corridor, it might im-
prove the robot’s performance to have a target point that is
more distant and allows the robot to drive faster. All these
different courses of action can be represented as different
expansions of theApproachPoint or MDPgoto schema. As
soon as an opportunity of improving the robot’s naviga-
tion plan has been detected, the planner can backtrack
in the expansion tree and select another expansion that
seems to be more suitable for the current situation.

4 Learning to Optimize Navigation Perfor-
mance

In the previous section, we have argued that HTNs sup-
port the optimization of navigation performance by op-
portunistic plan transformations. However, the detection
of opportunities for plan improvements is often difficult
and the specification of a good detector requires much in-
sight in the robot’s operation. In this section, we therefore
propose a method that projects different plan stubs and
selects the one which causes the lowest expected execu-
tion costs (time). Due to the declarativity of the HTNs,
the execution of different tasks can be monitored and a
prediction of the execution costs can be learned from past
experience.

Figure 2: Projection of the position of a robot after suc-
cessful completion of a navigation task.

The projection of the position and orientation of the robot
after successfully executingSetTarget(x, y, d) is done by
computing the optimal path to the targetT = (x, y) and
following the path to the first positionP = (x′, y′) on
the path that is at mostd cm away fromT . The robot
is supposed to faceT . The time the robot needs to ar-
rive at positionP has to be estimated based on previous
experience of executing this kind of task. As the time
the robot needs to execute the navigation task depends
on the shape and length of the path to the projected state
P , we use a set of features derived from the path. Be-
sides the path length, the path curvature (the ratio of the
euclidian distance to the target and the path length) and
the initial angle of the robot towards the path, the feature
set contains features derived from the main axis clearance
histogram of the environment map [3]. The featurecross-
esDoor, for example, is true if the path crosses a region
with low main axis clearance. The other primitive tasks
are straight forward to project as the execution costs are
either constant or only depend on the angle the robot has
to turn. Compound tasks are projected by projecting their
(default) expansion.

For the learning itself we have applied model trees [11,
18], an extension of regression trees [5] where the tree
leafs contain linear predictions rather than constant pre-
dictions. Model trees implement piecewise linear regres-
sion models with main-axis parallel boundaries. We have
decided to use tree-based induction methods for the func-
tion approximation as they provide in addition to a value
prediction an explanation of the results, which can be
translated into symbolic rules and is thus well accessible
for human inspection. Figure 3 shows a rule learned for
the task of predicting the durations of a navigation task.

IF (pathCurvature < 1.05) AND
(NOT crossesDoor) AND
(pathLength ≥ 110.00 AND
(pathLength < 130.00)

THEN duration = 1
23.99

∗ pathLength

Figure 3: One of the rules learned for the prediction task.



Figure 4: The four goal points for the real world experi-
ments.

5 Experimental Results

In this section, two experiments will be presented that
demonstrate the use of HTN plans for improving mobile
robot navigation. The first experiment shows how plan
transformations can be used to optimize navigation per-
formance. While in this experiment hand-coded trans-
formation rules are used, the second experiment shows
how machine learning techniques can help to disburden
the human programmer from specifying these rules.

5.1 Plan Transformations

In this experiment, the following three hand-coded trans-
formation rules are used to improve the robot’s navigation
performance.

1. If the robot has its back to the target point and its
clearance is low, then the robot turns towards the tar-
get point before approaching it.

2. If the robot’s clearance gets small along the path
fast, then the target point is set only one meter ahead.

3. If the robot’s path has a low curvature and the clear-
ance stays high along the path, then the target point
is set four meters ahead.

These transformations are implemented using the alter-
native expansions of theApproachPoint task (rule 1) and
the MDPgoto task (rules 2,3). During execution of the
plan, the robot starts to execute the default expansion of a
given task immediately and does not wait until all alterna-
tive expansions have been considered. During execution
the transformation rules are evaluated and applied if pos-
sible.

To evaluate the use of these transformations, the robot
executes the sequence of four navigation tasks shown in
Figure 4 ten times, both with and without transforma-
tions. The tasks are chosen such that the behavior of the
robot in four different situations can be analyzed. En-
tering an office, leaving an office, navigation in the hall-

Figure 5: The Pioneer II platform

way, and navigation from one office to another. By apply-
ing the above mentioned transformation rules, the naviga-
tion performance of a PIONEER II robot with laser range
finder (Figure 5) is on average improved by 30.88 %.

5.2 Learning to Predict Navigation Performance

Instead of specifying transformation rules by hand, the
robot can transform plans based on projections of its be-
havior and a learned prediction of the time it takes the
robot to execute a navigation task. The second experi-
ment shows that this results in a navigation performance
which is comparable to the behavior achieved with the
transformation rules described above which we consider
as expert knowledge.

To generate the data to learn the prediction function, the
robot repeatedly executes a sequence of 10 navigation
tasks in simulation by randomly selecting a possible re-
duction of theMDPgoto andApproachPoint tasks.

Using a greedy error reduction splitting criterion, linear
prediction functions, a depth-limit stopping criterion with
a limit of 7, and a reduced-error post-pruning criterion,
the model tree learner generates a set of 14 rules with one
to six preconditions from about 7000 training examples.

The learned rules are used to predict the performance of
the robot. If an alternative reduction of the current task
is projected to result in a better performance of the robot
than the default reduction, the plan is transformed accord-
ingly. This results in a navigation performance of the PI-
ONEERII which is 41.88 % better than without using plan
transformations and 8.4 % better than with hand-coded
transformation rules. Both performance improvements
are statistically significant with respect to a significance
level of 0.95.

However, the performance gain differed considerably for
the four tasks. While there was no significant perfor-
mance gain for the first task (entering the office), the per-
formance gain for the second task (leaving the office) was
51.37 %, for the third task (navigation in the hallway)
50.68 %. In the last task the robot on average performed
even 65.97 % better. The results show that the transfor-
mations are especially useful for the task of leaving an
office and fast navigation in the hallway.



Conclusion

Symbolic navigation plans allow control knowledge to be
expressed and used in the robot controller in a structured
way—that is the rationale behind all hybrid robot control
architectures. The HTN framework allows for compact
and efficient representation of such plans and alleviates
to deal with execution failures in the lower level control
routines in a transparent way.

The contribution of this paper is, first, to demonstrate
the advantage of using an abstract HTN layer of navi-
gation plans in a robot navigation system that has been
used successfully over an extended period of time on
various kinds of robots. Besides a transparent execu-
tion failure handling, such a layer facilitates opportunis-
tic plan transformations. In the experiments, the navi-
gation performance could be improved by 30.88 % us-
ing three hand-coded transformation rules. Second, we
have shown the way for using machine learning tech-
niques to predict the robot’s performance in different situ-
ations. The learned models are essential for projecting the
robot’s behavior when executing a given plan. Plan pro-
jections can be used to trigger plan transformations when-
ever they promise an improvement of the robot’s perfor-
mance. Combing planning and learning in this way, the
robot could improve its performance by 41.88 % on av-
erage. The learned rules thus outperform the hand-coded
rules by 8.4%.

Future work will include the learning of transformation
rules. The learning will be based on previously acquired
projective model as described in this paper and therefore
not require a human trainer.
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