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Abstract. The paper presents APPEAL, a three-layer mobile robot control Archi-
tecture for Projection-based Planning, Execution and Learning, with a focus on its
execution layer. Besides task decomposition and failure recovery, it supports the pro-
jection of navigation plans based on learned models of navigation actions. Plan pro-
jection is applied to detect opportunities for improving the robot’s navigation plan and
transforming it accordingly. In the experimental section, we quantify the performance
gains achieved by applying these techniques, both in simulation and on a robot. The
savings are considerable.

1 Introduction

Symbolic task planners have been used in robot control since SHAKEY’s [21] times. They
allow a robot to achieve its tasks in a large number of situations without the need to ex-
plicitly specify its behavior for all possible situations and tasks. Hybrid robot control ar-
chitectures [19, 16, 6] allow abstract, symbolic actions to be connected with the required
reactive, behavioral facets of the robot control system. These architectures organize the slow
deliberative planning process and the fast reactive control process in corresponding layers,
namely, the deliberation and the behavioral layers, and connect them by the execution or
sequencing layer. This layer is typically responsible for task decomposition and synchroniza-
tion, execution monitoring, failure recovery, and resource management. RAP (Firby) [10],
TCA/TDL(Simmons) [24], and ESL(Gat) [13] are high-level languages that are widely used
for building sequencing layers.

The three-layer architecture APPEAL (Architecture for Projection-based Planning, Exe-
cution and Learning) is the framework behind the work reported in this paper. APPEAL is an
extension of the RHINO control architecture [8, 26]. On top of a behavioral layer for collision
avoidance and local trajectory planning [5], an execution layer is built which implements a
variety of functions, namely, localization, mapping, path planning, task decomposition, exe-
cution monitoring, and failure recovery [4]. The execution layer of APPEAL also provides a
mechanism for projecting navigation plans based on learned models of the robot’s actions. It
supports the projection of navigation plans, which can be used to improve plan quality dur-
ing plan execution. Plan projection and its application in APPEAL is the main focus of this
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paper. The top layer, the deliberation layer, consists of a user interface with which a user can
specify abstract navigation tasks. The deliberative layer may also contain a task or mission
planner.

The idea of plan projection is to forecast the physical robot performance on the basis of
the abstract, symbolic plan representation. This is not a simulation, and deliberately so. Plan
projection tolerates all the abstractions and inaccuracies of the plan level domain description
for the sake of efficiency of reasoning. Its purpose is to find with negligible effort possible
alternative courses of action that look better in some respect than the currently available plan.
If such a plan is found, it is swapped into the robot controller instead of the previous one.

We borrow the term plan projection from McDermott [18] and from its refinements later
developed by Beetz [2]. Beetz’s work on plan projection has focused on making the robot
performance more robust by forestalling certain critical situations that some plan might lead
the robot into. We focus on speeding up the execution of navigation plans, while conserving
their expected robustness.

The remainder of this paper is organized as follows. The next section sketches the overall
organization of APPEAL. Then we describe symbolic action plans as are used by the exe-
cution layer to represent navigation plans. Section 4 targets the mechanisms for projecting
the robot’s behavior. Section 5 presents the experiments carried out to evaluate the use of the
projection mechanism for improving plan quality during execution, both in simulation and
on a physical robot. Section 6 concludes.

2 A Sketch of the APPEAL Architecture

APPEAL is an extension of the RHINO control architecture. The RHINO architecture is well
known for two reasons: First, its robust performance in two early tour-guide projects (in the
Deutsches Museum in Bonn [7], and the Smithsonian Institute in Washington D.C. [25]) and
second, the consequent application of probabilistic algorithms to both map learning [26] and
localization [11].

The RHINO architecture is designed as a distributed system with modules for effector
control, sensor interpretation, collision avoidance [12], map learning [26], localization [11],
path planning [26], task planning [7, 25], and user interaction [23]. In the museum events,
tasks were planned using GOLOG, a first-order logic programming language based on the
situation calculus [17] and a structured reactive controller (SRC) [1]. Both systems are pow-
erful for planning, but were mainly used to schedule user requests. GOLEX [14] was used
for translating abstract actions into finite state machines and monitoring their execution.

APPEAL keeps the distributed, modular design, but introduces a layering as depicted
in Figure 1. The lowest, behavioral, layer contains modules for effector control, sensor in-
terpretation and a behavioral system, which extends the dynamic window approach [12] by
local planning [5]. The robot approaches local target points while avoiding collisions with
unexpected or dynamic obstacles. The middle, execution, layer contains the modules for lo-
calization, map update, path planning and plan execution. The execution layer replaces the
GOLEX module of the original RHINO system. The top, deliberation, layer contains the
user interface. It may also contain a task planner. Currently no task planner is used as the
scheduling of navigation tasks is performed by the execution layer and no other complicated
reasoning tasks have to be carried out, neither in the tourbot domain nor in the office delivery
domain.
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Figure 1: The layering of APPEAL: behavior, execution, and deliberation layers. Arrows denote the information
flow.

3 Plans in APPEAL’s Execution Layer

The execution layer of APPEAL integrates the pose estimation computed by the localiza-
tion component, the continuously updated environment map and the status information of
the behavioral system into a global world model. Based on the world model and the path
planning module, the execution module can decompose user-specified tasks into tasks exe-
cutable by the behavioral layer. The execution module also manages alternative plans to react
to unforeseen execution failures and to optimize plan quality during execution as described
in Section 4. Mapping and localization are taken from the RHINO architecture as published
elsewhere [26, 11]. Our use of symbolic plans in APPEAL has recently been described [4];
we summarize it here to make the paper self-sufficient.

The execution module represents abstract navigation actions in terms of HTN (Hierar-
chical Task Network) [20] plans for robot navigation. HTN planning specifies a planning
problem as a task network, i.e., a set of tasks together with constraints on their order and
restrictions on variable bindings. Tasks may be elementary, i.e., executable by the robot, or
compound, i.e., to be expanded into a task network. The expansion, in general, is not unique.
Planning is performed by expanding compound tasks until only elementary ones remain. The
resulting network of elementary tasks is a solution plan for the problem. In this paper, we use
only total-order task networks and ground instances of tasks, handling linear propositional
plans all the time. This simplification does, of course, not apply to HTN planning in general.

To introduce some terminology, we call plan stub an HTN with an elementary task in
front. The strategy of stopping to reduce elementary tasks in an HTN as soon as a plan stub
has been found, is called the lazy expansion principle. We apply it as the robot may start
navigating even before a finished solution plan has been found. The rationale is that, first,
we cannot assume that no unforeseen events occur during plan execution (which would make
plan suffixes unexecutable or irrelevant) and that, second, plans may include sensing actions,
the results of which may not be known at planning time. The lazy expansion principle reduces
waste of planning time in these cases.

To give an example, here are some elementary and compound tasks in navigation. Again,
we refer to [4] for a more detailed description. Elementary tasks for the navigation domain
include: SetTarget(x, y, d) sets the target point (x, y) for collision-free drive control, to be
approached up to d cm precision. TurnTo(x, y) causes the robot to rotate on the spot until



Figure 2: Left: Part of the task expansion hierarchy. Right: Projection of the position of a robot after successful
completion of a navigation task. Arrows denote expansion hierarchies.

heading towards the point (x, y). MoveForward/Backward(d) causes the robot to move by
d cm straight forward/backward.

Up next in the hierarchy is a task like ApproachPoint(x, y, d) which represents the choice
of the next intermediate target point and which expands into a sequence of elementary tasks.
Further up are tasks likeMDPgoto(x, y)which is responsible for the path planning. Whenever
a newMDPgoto task is inserted into the plan, the robot computes an optimal navigation policy
for the given task based on MDP planning using a grid map of the environment. When the
MDPgoto task is expanded into an ApproachPoint, an optimal path is computed from the
policy, and a new target point on the path is computed that is either 1m, 2m, or 4m ahead on
the path depending on the selected expansion. Figure 2 (left) shows the part of the expansion
hierarchy which is relevant for the experiments.

Further details are out of the scope here. However, keep in mind that all compound tasks
have a default expansion and one or more alternative expansions, which may be used in turn if
executing the most recent expansion has returned an error. For example,ApproachPoint(x, y, d)
can, if its default expansion fails at some point, be expanded into the alternative sequences
TurnTo(x, y), SetTarget(x, y, d), or MoveBackward(30), TurnTo(x, y), SetTarget(x, y, d).

Finding a working plan for some navigation mission is mostly easy, as many alternatives
exist. However, these plans may differ considerably in quality, that is, in robot execution time.
As the search for an optimal plan is computationally expensive, the robot should start exe-
cution as soon as a plan stub has been found. During execution, the robot may continue to
search in the background for plans with higher expected performance. To support this kind
of transformational planning, APPEAL’s planner includes a mechanism for plan projection.
The next section will discuss this mechanism for plan projection and its application to opti-
mizing plan quality.

4 Plan Projection in APPEAL

Plans in APPEAL can be projected on any level of detail, that is on any level of the task
expansion hierarchy. Plan projection on the level of ApproachPoint tasks is equivalent to the
task of selecting intermediate target points for the optimal path to the goal. Plan projection in
this case means to search for an optimal sequence of ApproachPoint tasks. We formulate the
search problem by specifying the initial state, the goal test, the successor state function, and



Figure 3: An environment segmentation based on the main axis clearance map with (a) narrow passages, (b) pas-
sages, and (c) free passages.

the cost function.
The initial state is the state of the robot at the time the search process starts. Each state

that is sufficiently close to the MDPgoto’s goal state is a goal state in the search process. The
robot’s state after executing ApproachPoint(x, y, d) is estimated by computing the optimal
path to the target T = (x, y) and following the path to the first position P = (x ′, y′) on the
path that is at most d cm away from T , facing T . This process is visualized in Figure 2 (right).

We assume that ApproachPoint tasks do not fail completely. Due to the exception han-
dling performed in APPEAL, complete action failures are very rare. In the experiments, an
unrecoverable failure occurred with a probability of less than 0.001. Please refer to [3] for a
discussion of how plan projection can be modeled as Markov Decision Process in the case of
frequent execution failures.

The prediction of the costs of executing an action a in state s is based on learned models
of the action, more precisely, on the expected time the robot needs to execute a in s. As
the time the robot needs to execute the navigation task depends on the shape and length of
the path to the projected state P , we use a set of features derived from the path. Besides
the path length, the path curvature (ratio of the Euclidian distance to the target and the path
length) and the initial angle of the robot towards the path, the feature set contains features
derived from the main axis clearance histogram of the environment map [3]. The features
NarrowPassageCounter, PassageCounter and FreePassageCounter, for example, count the
number of grid cells on the path that belong to a narrow passage, a passage or a free passage
respectively. Figure 3 shows the segmentation of the robot’s map into narrow passages (a),
passages (b), and free passages (c).

For the learning we have applied model trees [15, 22], an extension of regression trees
where the leafs contain linear predictions rather than constant predictions. Model trees imple-
ment piecewise linear regressionmodels with main-axis parallel boundaries. We have decided
to use tree-based induction methods for the function approximation as they provide in addi-
tion to a value prediction an explanation of the results, which can be translated into symbolic
rules and is thus well accessible for human inspection.

Using this formalization of the plan execution problem, plan projection can be performed
using any complete search algorithm. The first action on the shortest path that leads into a goal
state is selected for expansion. To restrict the planning horizon, we allow only one possible
action, the default action, for all nodes beyond the planning horizon.



Figure 4: The four goal points for the real world experiments (left) carried out using a pioneer robot with laser
range finder (right).

5 Experimental Results

In this section, two types of experiments will be presented that demonstrate the use of plan
projections for optimizing the robot’s navigation performance. The first experiment is per-
formed on a PIONEER II platform. It demonstrates that models learned in simulation can
improve the robot overall performance even when transferred to a physical robot. The sec-
ond experiment is carried out in simulation and tests the utility of plan projection on a larger
number of tasks.

5.1 Experiment 1

In the first experiment, a PIONEER II robot (Figure 4 right) is to execute the navigation tasks
1 → 2, 2 → 3, 3 → 4, and 4 → 1 for the four goals shown in Figure 4. We compare the
performance of four different methods to select expansions of the MDPgoto task for these
tasks.

In the following, the method of projection-based plan transformation as described above
is denoted as PROJ. PROJ(k) is the same algorithm with a planning horizon of k. To eval-
uate the utility of the learned models, these methods are compared to two other standards.
DEFAULT computes and executes the default plan without the application of any transfor-
mation. CODED applies a set of carefully hand-coded transformation rules to improve the
robot performance.

To generate the data to learn the cost function for PROJ and PROJ(1), the robot re-
peatedly executes the following procedure. It selects its next goal point randomly from the
four goal points depicted in Figure 4 and executes the resulting MDPgoto task by randomly
selecting possible expansions, i.e., intermediate target points.

Using a greedy error reduction splitting criterion, a single-variate linear prediction func-
tion, a depth-limit stopping criterion with a limit of 7, and a reduced-error post-pruning cri-
terion, the model tree learner generates a set of 14 rules with one to six preconditions from
about 7000 training examples.

To account for the high variance in the robot’s behavior, the robot executes the sequence
of four navigation tasks shown in Figure 4 ten times with each method. PROJ(1) performs
on average 41.88 % better than DEFAULT and even 8.4 % better than CODED. Both perfor-



Figure 5: The twenty goal points used in the simulator experiment (left). The average time for the execution of
the twenty tasks (right).

A vs. B DEF. CODED PRJ(1) PRJ

DEF. 0.5000 0.9998 0.6392 0.9963
CODED 0.0006 0.5000 0.0068 0.2690
PRJ(1) 0.3487 0.9909 0.5000 0.9693
PRJ 0.0031 0.7266 0.0313 0.5000

Table 1: The significance probabilities for the pairwise comparison of the different policies. The significance
probabilities are computed using a randomized paired t-test.

mance improvements are statistically significant with respect to a significance level of 0.95.
Surprisingly, PROJ does not perform significantly better than PROJ(1) in this case.

5.2 Experiment 2

In the simulator experiment, the robot has to execute the sequence of navigation tasks de-
picted in Figure 5 (left). Each sequence is executed five times using the different policies.
Besides comparing the average time that the robot needs to accomplish the sequence of nav-
igation tasks, we compute the statistical significance of an observed performance using a
randomized paired t-test [9, pp. 168-170].

The cost function is learned on the basis of 7139 examples. In contrast to the first experi-
ment, we apply multi-variate linear regression as prediction function. From the examples, the
robot learns a set of 11 rules to predict the time it needs to complete an ApproachPoint task.

Figure 5 visualizes the time the robot needs to accomplish the sequence of navigation
tasks using the different selection policies. The planned execution policies as well asCODED
outperform DEFAULT. PROJ(1) improves the performance only by 2.22%, while PROJ
improves it by 12.70%. The coded rules improve performance by 15.30%.

Table 1 shows the significance probabilities for the pairwise comparison of the different
methods, that is, the probability to obtain the observed pairwise differences under the assump-



tion that algorithm A and algorithm B in fact perform equally well. The probabilities have
been computed using a randomized paired t-test which, in contrast to the parametric t-test,
does not assume that each sample is drawn from normal distributions and with equal variance.
With respect to the well-established significance level of α=0.05,DEFAULT is outperformed
by CODED and PROJ. At this level, the latter algorithms do not differ in performance, both
outperforming PROJ(1).

The performance improvements in this case are less impressive than in the real robot
experiment. This might have multiple reasons. First, the real tasks might be more difficult
than the average task in the simulator experiment. Second, though there are less tasks in the
experiment, there are almost as many examples to learn from. The learning algorithm thus
might learn a model which is adapted very well to the four navigation tasks, but does not
generalize well to other navigation tasks.

6 Conclusion

One of the many purposes of symbolic plans in hybrid robot control architectures like AP-
PEAL is to increase the robot performance. The focus of this paper was to examine how
plan projection can increase robot performance. To demonstrate its usefulness, we have ex-
amined the application of transforming the robot’s navigation plan in order to improve its
performance.

In both experiments, the increase in performance was considerable. Using learned trans-
formation rules on plan level, the performance in physical office navigation could be im-
proved by 41.9% w.r.t. straightforward navigation behavior as in the basic RHINO software.
In the simulator experiments, where the performance of the robot for a larger number of
tasks was analysed, the performance improvement was less impressive. In this case, however,
plan projection with unlimited planning horizon was shown to outperform projection based
planning with a planning horizon of one.

Plan projection comes for free in a hybrid control architecture in the sense that it may
run asynchronously in parallel to the robot controller, consuming otherwise un-used compute
power on-board the robot whenever available, or even running on other processors. From
these results and considerations, we conclude that plan projection is a powerful tool for help-
ing a robot perform better.
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