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Semantic Map

A semantic map for a mobile robot is a map that contains,
In addition to spatial information about the environment,

assignments of mapped features to entities of known classes.
Further knowledge about these entities, independent of the

map contents, is available for reasoning in some knowledge
base with an associated reasoning engine.

® A semantic (spatial) map exists only in relation to a KB!
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There is More to Semantic Mapping than Labeling
Objects in a Given Map!

* Reasoning in the domain theory allows hypotheses to be
generated

 Hypotheses may need to be checked

« The area (space and the objects in it) get actively explored

« Exploration means “going there”, but possibly exploring
(manipulating, inspecting, ...) objects, too
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Overview

1. Pose Planning in Autonomous (Semantic) Mapping
2. Some More on CAD Model Matching

3. Open Issues
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3D SLAM with 6D Poses




What’s Missing for Autonomous SLAM?

* Online registration of 3D Scans
— (some) literature, including (quite some) own

« Online pose correction according registration transformation
— (some) literature, including (quite some) own

* Online loop detection
— literature, including (some) own

* Online planning of next pose/path to optimize mapping
— only very little literature
— including (some) own and today’s paper
— criteria:
« fill up geometry map
« verify object hypotheses
* ... and many more
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All in Integration in a(nother) Castle
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3D-SPLAM (2/5)

X X st
] I Sort and complete lines
. Polar angels o, of the line ends induce unique order.

Connect neighboring scan lines by added artificial
ones = Slice Polygon
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hinzugefugte Linien

3D-SPLAM (3/5)

K Draw scan position candidates
Uniformly distributes Random Sampling in

slice polygon, fixed number of test positions

hinzugefiigte Linien —----
gefundene Linien

The slice polygon ... (cm]

. borders the area mapped >
until now

.. touches un-mapped area {
with its artificial lines o

. Is not necessarily free of
“‘gaps” and “holes”

150 0 150 [cm]
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hinzugefigte Linien —----
......

3D-SPLAM (4/5)

Rate scan pose candidates x

P e |G(x) (information gain): # virtual laser beams
1 | i m .
hinzagsliges Lisien that cut across any artificial lines
(the more, the better!)

* ||xq.~X||: Distance to x from current robot
position x... (the smaller, the better!)

* ||6,.~—9)||: Angular difference between the

. current robot orientation 6., and the orientation
i 5 g R 0(x) of pose x 1 |
' 1 (the smaller, the better!) . i L ——
S0 Optimal scan pose | N, £Y
e.g. '
X, = argmax[wllG(X) + wzHXSmt — XH + M@HHSWt — H(X)H]
X

-150 0 150 [cm]
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Plan trajectory

* Either in closed-form continuous
solution (elegant, somewhat brittle)

* Or with ,discrete” approach:
* turn to goal point;
* drive there straight;
* turn into goal orientation

* Both maybe with intermediate targets

* Then check in 3D model, whether

trajectory free!

* |[f not, take
next pose

Physical ride with
obstacle avoidance,
of course!
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Cousins from Computational Geometry |

Where put N guards, so that they can see all points of the
Art Gallery Problem inside area of a polygon (without holes)?

Theorem

For Polygon of P
vertices ex.
solution for N=| P/3|

Is it simple to find
good solutions?

Theorem o
The Art Gallery
Problem is
NP-hard

But we want
only 1 robot!
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Cousins from Computational Geometry Il

Watchman Problem Find a (minimal) path for one watchman, that allows him to
oversee the inside area of the polygon completely!

Theorem

The Watchman
Problem is
NP-hard

(because the Art
Gallery Problem is)

But we watch in
static poses only!

...and we do not
have the map!

]
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The Problem of Optimal Exploration

What is, dependent on start information and real environment geometry, a
drivable (kinematic, collision), expectedly shortest path between scan poses at
the end of which ==
the polygon’s

Inside area is
completely mapped?

Solution
currently
unknown!
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More Reasons for a Robot for Particular Target Points

Self organization
* e.g., ‘Go to charging station!”

* Pose disambiguation

* e.g., if entropy in probabilistic localization too high (“Go to landmark!”)
* or planned right away as intermediate targets to avoid losing the
pose estimation in the first place (“coastal navigation™)

* “Transit poses”
* e.g. door passing: Pass through pose on the door normal to avoid
crossing through the door in an angle

* Poses to manipulate individual objects
* e.g. clear table: Drive to pose allowing to reach as many clearable
items as possible
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Reminder: Architecture Context

Semantic Map
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hypothesis
verification
-
image-feature-based| |shape-feature-based|: hypothesis
object recognition object recognition | - generation

- |geometric primitive|
detection

----------------------------------------------------------

Other object recognition
methods may/should co-exist!

Physical Sensors:

3D laser scanners / cameras / RGB-D sensors / TOF cameras
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Model-
based

object
recognition
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Practical Issues in 3D Semantic Mapping
* Practically, Semantic Mapping is based on single scans/
frames, rather than fully registered scene models

 In particular RGB-D cameras have small opening angle:
only partial object views per frame, blurred by sensor noise

« Surfaces in real-world scenes are frequently cluttered
« Shiny and transparent objects exist

« A great many object models are available for matching

o Care about robustness

— against occlusion
— of CAD matching

R
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Robustness Against Occlusion

« When does object detection break in face of clutter?

* When does plane detection break?

« Table experiment




Point Cloud, Mesh and Segmentation
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Result in Summary

0 obj. 2o0bj. 3obj. 4o0bj. 5obj. 6obj. 7obj. 12 obj.

Region 1.50 1.47 1.47 1.40 1.35 1.26 1.17 0.95
Growing 93% 92% 92% 87% 84% 79% 73% 59%
Contour 1.50 1.50 1.49 1.52 1.52 1.52 1.50 1.20

Triangulation 93%  93%  93%  95%  95%  95%  93% 75%

« Table top area in m? and as percentage of ground truth
* Region growing starts breaking for moderate clutter

« Contour triangulation stabilizes matters, unless the contour
IS occluded, too

* Need help, e.g., of texture

PTG
‘ ey 24
R 01

UNIVERSITAT o OSNABRUCK




Robustness of CAD Object Matching

Chairs are
different

CAD models of
different chair
types applied for
matching against
sensed chairs

Sensed chairs
even more

Chair model
registered from 3
Kinect frames

’ 25
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Best Matches depend on ...
* ... good pose guess and good type guess

* A best match does always exist!




Some Details
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Quantitative Results

final pose error

pose 1 pose 2 pose 3

Ctranslation  Crotation  Ctranslation €rotation  CEtranslation  Erotation
chair 1 0.5cm 0.47° 0.5cm 0.48° 0.5cm 0.0°
chair 2 0.0cm 0.1° 0.1cm 0.11° 0.0cm 0.0°
chair 3 0.0 cm 0.04° 0.0 cm 0.04° 0.0 cm 0.01°
chair 4 0.1cm 0.04° 0.1cm 0.05° 1.9cm  34.07°
chair 5 7 3.1cm 12.22° 2.2cm  22.55° 3.0cm 12.77°
chair 6 29.5 cm 3.56° 11.1cm  42.81° 10.9cm  42.85°

* Insignificant differences among “plausible” chair models
« Stool and wingchair stick out

t Stool is largely rotation symmetric, don’t regard rotation error!
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Open Issues/Work in Progress

« Care about transparent and shiny objects
* Find criteria for “good enough” match
* Really do multi-modal semantic mapping

» Really do active semantic mapping (to resolve ambiguity,
move sensors & manipulate environment)

« Use GIS technology for storing semantic maps (space-
related part) compactly and help optimize (some) queries

— “Give me the list of green tables with at least 1 muffin on”

R
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Thank you for your time!
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