
1 

Semantic Mapping – 
Some Details 

Joachim Hertzberg 

Osnabrück University 
and DFKI Robotics Innovation Center 



2 

(Own) Material 
•  H. Surmann, A. Nüchter, J. Hertzberg.  

An Autonomous Mobile Robot with a 3D Laser Range Finder for 3D 
Exploration and Digitalization of Indoor Environments. 
J. Robotics and Autonomous Systems 45:181-198, 2003 

•  A. Nüchter, J. Hertzberg.  
Towards Semantic Maps for Mobile Robots.  
J. Robotics and Autonomous Systems 56(11):915-926, 2008 

•  M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg.  
Building Semantic Object Maps from Sparse and Noisy 3D Data.  
Proc. IROS-2013, pp. 2228-2233 

•  M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg. 
Model-Based Furniture Recognition for Building Semantic Object Maps 
J. Artificial Intelligence, forthcoming 



3 

Semantic Map 

A semantic map for a mobile robot is a map that contains,  
in addition to spatial information about the environment, 
assignments of mapped features to entities of known classes. 
Further knowledge about these entities, independent of the 
map contents, is available for reasoning in some knowledge 
base with an associated reasoning engine. 

 A semantic (spatial) map exists only in relation to a KB! 
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There is More to Semantic Mapping than Labeling 
Objects in a Given Map! 

•  Reasoning in the domain theory allows hypotheses to be 
generated 

•  Hypotheses may need to be checked 

•  The area (space and the objects in it) get actively explored 

•  Exploration means “going there”, but possibly exploring 
(manipulating, inspecting, …) objects, too 
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Overview 

1.  Pose Planning in Autonomous (Semantic) Mapping 

2.  Some More on CAD Model Matching 

3.  Open Issues 
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3D SLAM with 6D Poses 
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What’s Missing for Autonomous SLAM? 
•  Online registration of 3D Scans 

–  (some) literature, including (quite some) own 

•  Online pose correction according registration transformation 
–  (some) literature, including (quite some) own 

•  Online loop detection 
–  literature, including (some) own 

•  Online planning of next pose/path to optimize mapping 
–  only very little literature 
–  including (some) own and today’s paper 
–  criteria: 

•  fill up geometry map 
•  verify object hypotheses 
•  … and many more 
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All in Integration in a(nother) Castle 
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3D-SPLAM (1/5) 

Raw Material 
3D-Scan/s 

Expl.: corridor scene, 

Extract 2D Slice 

Reduction to 2D 
Expl.: all points with y=150±2cm 

Planning 
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3D-SPLAM (2/5) 

Points to lines 

Sort and complete lines 
Polar angels !i of the line ends induce unique order. 
Connect neighboring scan lines by added artificial 
ones ! Slice Polygon 

Slice Polygon 
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3D-SPLAM (3/5) 

The slice polygon … 
… borders the area mapped 

until now 
… touches un-mapped area 

with its artificial lines 
… is not necessarily free of 

“gaps” and “holes” 

Draw scan position candidates 
Uniformly distributes Random Sampling in 
slice polygon, fixed number of test positions 
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3D-SPLAM (4/5) 
Rate scan pose candidates x!
•  IG(x) (information gain): # virtual laser beams 

that cut across any artificial lines  
(the more, the better!) 

•  ||xStart–x||: Distance to x from current robot 
position xStart (the smaller, the better!)!

•  ||"Start–"(x)||: Angular difference between the 
current  robot orientation "Start and the orientation 
"(x) of pose x 
(the smaller, the better!) 

Optimal scan pose 

! 

xZiel = argmax
x

w1IG x( ) + w2 xStart " x + w3 #Start "# x( )[ ]
e.g. 
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3D-SPLAM (5/5) 

Volumes 
occupied space 

 Plan trajectory 
• Either in closed-form continuous 

solution (elegant, somewhat brittle)  
• Or with „discrete“ approach: 

•  turn to goal point; 
• drive there straight; 
•  turn into goal orientation 

• Both maybe with intermediate targets 
•  Then check in 3D model, whether 

trajectory free! 
•  If not, take  

next pose 

Physical ride with 
obstacle avoidance, 

of  course! 
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Cousins from Computational Geometry I 
Art Gallery Problem Where put N guards, so that they can see all points of the  

inside area of a polygon (without holes)? 

Theorem!
For Polygon of P 
vertices ex. 
solution for N=#P/3$!

Is it simple to find 
good solutions? 

Theorem 
The Art Gallery 
Problem is 
NP-hard 

But we want 
only 1 robot! 
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Cousins from Computational Geometry II 
Watchman Problem Find a (minimal) path for one watchman, that allows him to 

oversee the inside area of the polygon completely!  

Theorem 
The Watchman 
Problem is 
NP-hard 
(because the Art 
Gallery Problem is) 

But we watch in 
static poses only! 

…and we do not 
have the map! 
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The Problem of Optimal Exploration 

?

What is, dependent on start information and real environment geometry, a 
drivable (kinematic, collision), expectedly shortest path between scan poses, at 
the end of which  
the polygon’s  
inside area is  
completely mapped? 

Solution 
currently 
unknown! 
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More Reasons for a Robot for Particular Target Points 

•  Self organization 
•  e.g., “Go to charging station!” 

•  Pose disambiguation 
•  e.g., if entropy in probabilistic localization too high (“Go to landmark!”) 
•  or planned right away as intermediate targets to avoid losing the 

pose estimation in the first place (“coastal navigation”) 

•  “Transit poses” 
•  e.g. door passing: Pass through pose on the door normal to avoid 

crossing through the door in an angle 

•  Poses to manipulate individual objects 
•  e.g. clear table: Drive to pose allowing to reach as many clearable 

items as possible 
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Overview 

1.  Pose Planning in Autonomous (Semantic) Mapping 

2.  Some More on CAD Model Matching 

3.  Open Issues 



20 

Reminder: Architecture Context 

Model-
based 
object 
recognition 
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Practical Issues in 3D Semantic Mapping 
•  Practically, Semantic Mapping is based on single scans/

frames, rather than fully registered scene models 

•  In particular RGB-D cameras have small opening angle: 
only partial object views per frame, blurred by sensor noise 

•  Surfaces in real-world scenes are frequently cluttered 

•  Shiny and transparent objects exist 

•  A great many object models are available for matching 

 Care about robustness 
–  against occlusion 
–  of CAD matching 
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Robustness Against Occlusion 

table5_photo_sm.jpg
Click here to download high resolution image table8_photo_sm.jpg

Click here to download high resolution image

•  When does object detection break in face of clutter? 

•  When does plane detection break? 

•  Table experiment 
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Point Cloud, Mesh and Segmentation 
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Figure 3: Segmentation results for a table top setup. First column: the
captured point clouds; second column: initially created triangle mesh; third
column: segmentation results. Triangles that were not classified as belonging
to a planar patch are rendered in green. In each step more objects were added.
In the last line a shadow disrupted the outer contour and the segmentation
broke the table top plane into two clusters. (Figure reproduced from [5])

of furniture. Also, the physical object might differ from the CAD model for
other reasons (e.g., damage or other modifications).

To investigate how robust our ICP matching step is with respect to such
differences between CAD model and actual object, we conducted an experi-
ment where we matched several CAD models of chairs against recorded point
data of a chair. A photograph of the chair and a view of the resulting point
cloud can be seen in Fig. 4. The point cloud displayed in Fig. 4b was created
from five registered Kinect frames.

We matched this data against six different CAD models of chairs that
were retrieved from Google 3D Warehouse (Fig. 5). We considered the Chair
1 model (top left) as a best fit of the actual chair, while Chair 2–4 were
expected to be similar enough to produce meaningful matching results. For
comparison, we included a model of a stool (Chair 5) and a wing chair (Chair
6), which we expected to be too different from the chair in the sensor data

11
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Result in Summary 
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Table 1: Reconstructed areas in the table top experiment under increasing
amounts of clutter (reconstructed table top area in m2 and as percentage of
ground truth). First row: only region growing. Second row: region growing,
followed by contour triangulation.

0 obj. 2 obj. 3 obj. 4 obj. 5 obj. 6 obj. 7 obj. 12 obj.

Region
Growing

1.50 1.47 1.47 1.40 1.35 1.26 1.17 0.95
93% 92% 92% 87% 84% 79% 73% 59%

Contour
Triangulation

1.50 1.50 1.49 1.52 1.52 1.52 1.50 1.20
93% 93% 93% 95% 95% 95% 93% 75%

4. Results

We performed three experiments to evaluate the robustness and accuracy
of our recognition system. First, we investigated the effectiveness of our
hole filling procedure separately to see whether it is capable of estimating
the true surface area of a table under the influence of increasing amounts
of clutter. Second, we tested the robustness of our system with respect to
the required similarity between CAD model and actual object. Lastly, we
evaluated the detection accuracy of our complete system on two series of
point clouds captured by a mobile robot.

4.1. Robustness Against Occlusion

In real life applications, furniture is usually used to store objects, so an
obvious problem for our detection procedure is that the surfaces relevant for
recognition may be partially occluded. To evaluate the robustness of the
surface extraction procedure against occlusions, we gradually added typical
objects like books, cups and bottles to a table surface and tried to segment
the table top. The results of this experiment are shown in Fig. 3 and Ta-
ble 1. The estimated area remains close to the ground truth area even for
significant amounts of clutter; only when the outer contour is disrupted, the
area estimation breaks down.

4.2. Robustness of CAD Matching

While various CAD models for a a wide range of objects, including fur-
niture, are freely available on the world web wide via sources like Google 3D
Warehouse, it is often not easy to find the exact model for a particular piece

10

•  Table top area in m2 and as percentage of ground truth 

•  Region growing starts breaking for moderate clutter  

•  Contour triangulation stabilizes matters, unless the contour 
is occluded, too 

•  Need help, e.g., of texture 
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Robustness of CAD Object Matching 
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Figure 5: CAD models of chairs used for matching against chair depicted in
Fig 4. We considered the top left model to be a best fit, while apart from
the stool and the wing chair all models are similar enough in appearance to
provide meaningful results.

Figure 6: Initial pose visualization, depicted by the example of the ref-
erence CAD model (Chair 1). Initial translation and rotation errors
(etranslation/erotation) are as follows. Pose 1 (left): 13.87 cm/0.13◦; Pose 2 (mid-
dle): 0.65 cm/27.50◦; Pose 3 (right): 36.34 cm/22.5◦.

13

Chairs are 
different 

CAD models of 
different chair 
types applied for 
matching against 
sensed chairs  

Sensed chairs 
even more 

Chair model 
registered from 3 
Kinect frames 
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(a) (b)

Figure 4: Test data for the CAD matching experiment: (a) photograph of the
chair; (b) corresponding point cloud. Note that the Kinect did not provide
sensor readings for the chair legs due to their highly specular surface.

to produce good results.
The reference pose Xi,ref for each model was calculated by manually align-

ing the model, followed by ICP for the final adjustment (Fig. 7, top row).
All models ended up close to the initial pose except for Chair 6 (the wing
chair); this is due to the big number of points in the wing chair’s base.

For the actual experiment, our ICP model alignment step was run on
each chair model from three different initial poses, resulting in the final pose
Xi; see Fig. 6 for the initial poses and Fig. 7 for the final poses.

A pose Xi itself is composed as a 2-tuple
�
X̂i, X̃i

�
, where X̂i = (x, y, z)T

describes the translation part of the pose and X̃i = (p, q, r, s)T denotes the
rotation as a quaternion. In order to provide a meaningful error between a
reference pose Xi,ref and final pose Xi, we calculate the translational error
etranslation and the rotational error erotation. The translational error is simply
defined as the Euclidean distance between two poses:

etranslation = �X̂i − X̂i,ref� (1)

while erotationis a unit quaternion distance metric introduced by Kuffner [31]
as

erotation = arccos |X̃i · X̃i,ref | (2)

Using a unit quaternion distance metric has the advantage that it does

12
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Best Matches depend on … 
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Figure 7: Transparent overlay of final poses obtained by CAD matching with

point cloud. Top row: results from an aligned pose estimation. Second from

top: results from pose estimation below actual pose (Pose 1). Second from

bottom: results for slight displacement and rotation error (Pose 2). Bottom

row: results for larger displacement and rotation error (Pose 3). See Fig. 6

for visualization of initial pose.

not suffer from ambiguities, unlike the common method of comparing Euler

angles.

The resulting final errors for the six CAD models in this experiment are

shown in Table 2. As expected, Chair 1–4 converged about equally well to

the reference pose (except for one outlier from Chair 4), whereas Chair 5 and

6 did not converge well.

However it has to be noticed that the data used in this experiment was

not very challenging, since the chair is completely captured in the point cloud

data and there are no other objects near the chair. To evaluate the effects of
chosing a different CAD model on the performance of the complete system,

we ran the complete pipeline as explained in the next subsection once for each

chair model. Table 3 compares the final translation and rotation errors after

ICP alignment on the seminar room dataset (see Sec. 4.3, Table 4c). The

results clearly indicate that as long as the CAD model is “similar enough”

(chairs 1–4) to the objects found in the data, our system works. The results

for chairs 2–4 were even slightly better than for chair 1, which we consid-

14

•  … good pose guess and good type guess 

•  A best match does always exist! 
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Some Details 

sa_final_1.jpg
Click here to download high resolution image

cs_gt.jpg
Click here to download high resolution image

wc_final_3.jpg
Click here to download high resolution image

st_final_2.jpg
Click here to download high resolution image
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Quantitative Results 
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Table 2: CAD matching results. †: Note that this model is rotation invariant
around one axis, so the rotation error does not necessarily reflect the actual
quality of the final pose.

final pose error
pose 1 pose 2 pose 3

etranslation erotation etranslation erotation etranslation erotation

chair 1 0.5 cm 0.47◦ 0.5 cm 0.48◦ 0.5 cm 0.0◦

chair 2 0.0 cm 0.1◦ 0.1 cm 0.11◦ 0.0 cm 0.0◦

chair 3 0.0 cm 0.04◦ 0.0 cm 0.04◦ 0.0 cm 0.01◦

chair 4 0.1 cm 0.04◦ 0.1 cm 0.05◦ 1.9 cm 34.07◦

chair 5 † 3.1 cm 12.22◦ 2.2 cm 22.55◦ 3.0 cm 12.77◦

chair 6 29.5 cm 3.56◦ 11.1 cm 42.81◦ 10.9 cm 42.85◦

ered the best fit for the actual object and which is used in the subsequent
experiments.

4.3. Complete System

To evaluate our recognition system, we captured two series of point clouds
from a Kinect camera mounted on a mobile robot (see Fig. 8). In the first
scenario, the robot was tele-operated around an office while continuously
capturing point cloud data at 2.2 Hz, resulting in a total of 431 point clouds.
The office contained 13 recognizable objects from 5 classes (1 desk, 1 con-
ference table, 1 office chair, 5 conference chairs and 5 book shelves). For
the second dataset, the robot platform was driven through a seminar room,
capturing a total of 379 point clouds. The objects present in this dataset are
12 seminar tables and 20 chairs. One challenging aspect of this dataset is
that there is a high level of occlusion.

For both datasets, we registered the point clouds into a consistent full-
scene point cloud, using the SLAM6D toolkit [6]. The full-scene point clouds
were used to generate the ground truth poses for each piece of furniture by
hand. These poses are used to evaluate the results of our classification and
the ICP refinement step.

Ground truth data for each frame was generated by manually labeling
each frame with the information which of the objects occur in that frame.

15

•  Insignificant differences among “plausible” chair models 

•  Stool and wingchair stick out 

  Stool is largely rotation symmetric, don’t regard rotation error!  
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Open Issues/Work in Progress 
•  Care about transparent and shiny objects 

•  Find criteria for “good enough” match 

•  Really do multi-modal semantic mapping 

•  Really do active semantic mapping (to resolve ambiguity, 
move sensors & manipulate environment)  

•  Use GIS technology for storing semantic maps (space-
related part) compactly and help optimize (some) queries 
–  “Give me the list of green tables with at least 1 muffin on” 
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Thank you for your time! 


