- 1
-
K.R. Baker.
Introduction to Sequencing and Scheduling.
John Wiley & Sons, New York, 1974.
- 2
-
K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of a single machine to minimize maximum cost
subject to release dates and precedence constraints.
Oper. Res., 31:381-386, 1983.
- 3
-
P. Baptiste.
Polynomial time algorithms for minimizing the weighted number of late
jobs on a single machine with equal processing times.
J. Sched., 2:245-252, 1999.
- 4
-
P. Baptiste.
Scheduling equal-length jobs on identical parallel machines.
Discrete Appl. Math., 103(1):21-32, 2000.
- 5
-
P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky.
Ten notes on equal-execution-time scheduling.
4OR, 2:111-127, 2004.
- 6
-
J. B
azewicz.
Scheduling dependent tasks with different arrival times to meet
deadlines.
In Model. Perform. Eval. Comput. Syst., Proc. int. Workshop,
Stresa 1976, pages 57-65. North Holland, Amsterdam, 1976.
- 7
-
J. Du and J.Y.-T. Leung.
Minimizing total tardiness on one machine is NP-hard.
Math. Oper. Res., 15(3):483-495, 1990.
- 8
-
R.M. Karp.
Reducibility among combinatorial problems.
In Complexity of computer computations (Proc. Sympos., IBM
Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85-103.
Plenum, New York, 1972.
- 9
-
J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release dates.
In Progress in combinatorial optimization (Waterloo, Ont.,
1982), pages 245-261. Academic Press, Toronto, Ont., 1984.
- 10
-
E.L. Lawler.
Optimal sequencing of a single machine subject to precedence
constraints.
Management Sci., 19:544-546, 1973.
- 11
-
E.L. Lawler.
A ``pseudopolynomial'' algorithm for sequencing jobs to minimize
total tardiness.
Ann. of Discrete Math., 1:331-342, 1977.
- 12
-
E.L. Lawler.
Sequencing jobs to minimize total weighted completion time subject to
precedence constraints.
Ann. Discrete Math., 2:75-90, 1978.
- 13
-
E.L. Lawler.
A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs.
Ann. Oper. Res., 26(1-4):125-133, 1990.
- 14
-
E.L. Lawler and J.M. Moore.
A functional equation and its application to resource allocation and
sequencing problems.
Management Sci., 16:77-84, 1969.
- 15
-
J.K. Lenstra.
Not published.
- 16
-
J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity of scheduling under precedence constraints.
Oper. Res., 26(1):22-35, 1978.
- 17
-
J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity results for scheduling chains on a single machine.
European J. Oper. Res., 4(4):270-275, 1980.
- 18
-
J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems.
Ann. of Discrete Math., 1:343-362, 1977.
- 19
-
J.Y.-T. Leung and G.H. Young.
Minimizing total tardiness on a single machine with precedence
constraints.
ORSA J. Comput., 2(4):346-352, 1990.
- 20
-
B. Simons.
A fast algorithm for single processor scheduling.
In 19th Annual Symposium on Foundations of Computer Science (Ann
Arbor, Mich., 1978), pages 246-252. IEEE, Long Beach, Calif., 1978.
- 21
-
B. Simons.
Multiprocessor scheduling of unit-time jobs with arbitrary release
times and deadlines.
SIAM J. Comput., 12(2):294-299, 1983.
- 22
-
Z. Tian, C.T. Ng, and T.C.E. Cheng.
An
algorithm for scheduling equal-length preemptive jobs
on a single machine to minimize total tardiness.
J. Sched., 9(4):343-364, 2006.
WWW daemon apache
2009-06-29