K.R. Baker.
Introduction to Sequencing and Scheduling.
John Wiley & Sons, New York, 1974.

K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints.
Oper. Res., 31:381-386, 1983.

P. Baptiste.
Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times.
J. Sched., 2:245-252, 1999.

P. Baptiste.
Scheduling equal-length jobs on identical parallel machines.
Discrete Appl. Math., 103(1):21-32, 2000.

P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky.
Ten notes on equal-execution-time scheduling.
4OR, 2:111-127, 2004.

J. B\lazewicz.
Scheduling dependent tasks with different arrival times to meet deadlines.
In Model. Perform. Eval. Comput. Syst., Proc. int. Workshop, Stresa 1976, pages 57-65. North Holland, Amsterdam, 1976.

J. Du and J.Y.-T. Leung.
Minimizing total tardiness on one machine is NP-hard.
Math. Oper. Res., 15(3):483-495, 1990.

R.M. Karp.
Reducibility among combinatorial problems.
In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85-103. Plenum, New York, 1972.

J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release dates.
In Progress in combinatorial optimization (Waterloo, Ont., 1982), pages 245-261. Academic Press, Toronto, Ont., 1984.

E.L. Lawler.
Optimal sequencing of a single machine subject to precedence constraints.
Management Sci., 19:544-546, 1973.

E.L. Lawler.
A ``pseudopolynomial'' algorithm for sequencing jobs to minimize total tardiness.
Ann. of Discrete Math., 1:331-342, 1977.

E.L. Lawler.
Sequencing jobs to minimize total weighted completion time subject to precedence constraints.
Ann. Discrete Math., 2:75-90, 1978.

E.L. Lawler.
A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs.
Ann. Oper. Res., 26(1-4):125-133, 1990.

E.L. Lawler and J.M. Moore.
A functional equation and its application to resource allocation and sequencing problems.
Management Sci., 16:77-84, 1969.

J.K. Lenstra.
Not published.

J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity of scheduling under precedence constraints.
Oper. Res., 26(1):22-35, 1978.

J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity results for scheduling chains on a single machine.
European J. Oper. Res., 4(4):270-275, 1980.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems.
Ann. of Discrete Math., 1:343-362, 1977.

J.Y.-T. Leung and G.H. Young.
Minimizing total tardiness on a single machine with precedence constraints.
ORSA J. Comput., 2(4):346-352, 1990.

B. Simons.
A fast algorithm for single processor scheduling.
In 19th Annual Symposium on Foundations of Computer Science (Ann Arbor, Mich., 1978), pages 246-252. IEEE, Long Beach, Calif., 1978.

B. Simons.
Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines.
SIAM J. Comput., 12(2):294-299, 1983.

Z. Tian, C.T. Ng, and T.C.E. Cheng.
An ${O}(n^2)$ algorithm for scheduling equal-length preemptive jobs on a single machine to minimize total tardiness.
J. Sched., 9(4):343-364, 2006.

WWW daemon apache 2009-06-29