 1

P. Brucker and A. Krämer.
Polynomial algorithms for resourceconstrained and multiprocessor
task scheduling problems.
European J. Oper. Res., 90:214226, 1996.
 2

P. Brucker, S.A. Kravchenko, and Y.N. Sotskov.
On the complexity of two machine jobshop scheduling with regular
objective functions.
OR Spektrum, 19(1):510, 1997.
 3

M.R. Garey, D.S. Johnson, and R. Sethi.
The complexity of flowshop and jobshop scheduling.
Math. Oper. Res., 1(2):117129, 1976.
 4

S.A. Kravchenko.
Minimizing the number of late jobs for the twomachine unittime
jobshop scheduling problem.
Discrete Appl. Math., 98(3):209217, 1999.
 5

W. Kubiak and V.G. Timkovsky.
A polynomialtime algorithm for total completion time minimization in
twomachine jobshop with unittime operations.
European J. Oper. Res., 94:310320, 1996.
 6

J.K. Lenstra.
Not published.
 7

J.K. Lenstra and A.H.G. Rinnooy Kan.
Computational complexity of discrete optimization problems.
Ann. Discrete Math., 4:121140, 1979.
 8

M. Middendorf and V.G. Timkovsky.
Transversal graphs for partially ordered sets: sequencing, merging
and scheduling problems.
J. Comb. Optim., 3(4):417435, 1999.
 9

Y.N. Sotskov.
The complexity of shopscheduling problems with two or three jobs.
European J. Oper. Res., 53(3):326336, 1991.
 10

Y.N. Sotskov and N.V. Shakhlevich.
NPhardness of shopscheduling problems with three jobs.
Discrete Appl. Math., 59(3):237266, 1995.
 11

V.G. Timkovsky.
On the complexity of scheduling an arbitrary system.
Soviet J. Comput. Systems Sci., 23(5):4652, 1985.
 12

V.G. Timkovsky.
A polynomialtime algorithm for the twomachine unittime
releasedate jobshop schedulelength problem.
Discrete Appl. Math., 77(2):185200, 1997.
 13

V.G. Timkovsky.
Is a unittime job shop not easier than identical parallel machines?
Discrete Appl. Math., 85(2):149162, 1998.
WWW daemon apache
20090629