J.O. Achugbue and F.Y. Chin.
Scheduling the open shop to minimize mean flow time.
SIAM J. Comput., 11:709-720, 1982.

P. Baptiste.
On minimizing the weighted number of late jobs in unit execution time open-shops.
European J. Oper. Res., 149(2):344-354, 2003.

P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky.
Ten notes on equal-execution-time scheduling.
4OR, 2:111-127, 2004.

H. Bräsel, D. Kluge, and F. Werner.
A polynomial algorithm for the $[n/m/0,\ t\sb{ij}=1,
tree/{C}\sb{\max}]$ open shop problem.
European J. Oper. Res., 72(1):125-134, 1994.

H. Bräsel, D. Kluge, and F. Werner.
A polynomial algorithm for an open shop problem with unit processing times and tree constraints.
Discrete Appl. Math., 59(1):11-21, 1995.

P. Brucker, B. Jurisch, and M. Jurisch.
Open shop problems with unit time operations.
Z. Oper. Res., 37(1):59-73, 1993.

P. Brucker and S.A. Kravchenko.
Complexity of mean flow time scheduling problems with release dates.
OSM Reihe P, Heft 251, Universität Osnabrück, Fachbereich Mathematik/Informatik, 2004.

E.G. Coffman, Jr., J. Sethuraman, and V.G. Timkovsky.
Ideal preemptive schedules on two processors.
Acta Informat., 39:597-612, 2003.

T. Gonzalez and S. Sahni.
Open shop scheduling to minimize finish time.
J. Assoc. Comput. Mach., 23(4):665-679, 1976.

S.A. Kravchenko.
On the complexity of minimizing the number of late jobs in unit time open shops.
Discrete Appl. Math., 100(2):127-132, 1999.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Minimizing maximum lateness in a two-machine open shop.
Math. Oper. Res., 6(1):153-158, 1981.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Erratum: ``Minimizing maximum lateness in a two-machine open shop'' [Math. Oper. Res. 6 (1981), no. 1, 153-158].
Math. Oper. Res., 7(4):635, 1982.

J.K. Lenstra.
Not published.

C.Y. Liu and R.L. Bulfin.
Scheduling open shops with unit execution times to minimize functions of due dates.
Oper. Res., 36(4):553-559, 1988.

I. Lushchakova.
Two machine preemptive scheduling problem with release dates, equal processing times and precedence constraints.
European J. Oper. Res., 171(1):107-122, 2006.

V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevich.
Scheduling theory. Multi-stage systems, volume 285 of Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht, 1994.
Translated and revised from the 1989 Russian original by the authors.

V.G. Timkovsky.
Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity.
European J. Oper. Res., 149(2):355-376, 2003.

WWW daemon apache 2009-06-29