P. Baptiste.
Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times.
J. Sched., 2:245-252, 1999.

P. Baptiste.
Scheduling equal-length jobs on identical parallel machines.
Discrete Appl. Math., 103(1):21-32, 2000.

P. Baptiste and V. Timkovsky.
Shortest path to nonpreemptive schedules of unit-time jobs on two identical parallel machines with minimum total completion time.
Math. Methods Oper. Res., 60(1):145-153, 2004.

P. Brucker and S. Knust.
Complexity results for single-machine problems with positive finish-start time-lags.
Computing, 63:299-316, 1999.

P. Brucker, S. Knust, and C. Oguz.
Scheduling chains with identical jobs and constant delays on a single machine.
Math. Methods Oper. Res., 63(1):63-75, 2006.

J. Bruno, J.W. Jones, III, and K. So.
Deterministic scheduling with pipelined processors.
IEEE Trans. Comput., 29(4):308-316, 1980.

J. Du and J.Y.-T. Leung.
Minimizing total tardiness on one machine is NP-hard.
Math. Oper. Res., 15(3):483-495, 1990.

L. Finta and Z. Liu.
Single machine scheduling subject to precedence delays.
Discrete Appl. Math., 70(3):247-266, 1996.

R.M. Karp.
Reducibility among combinatorial problems.
In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85-103. Plenum, New York, 1972.

E.L. Lawler.
Optimal sequencing of a single machine subject to precedence constraints.
Management Sci., 19:544-546, 1973.

E.L. Lawler.
A ``pseudopolynomial'' algorithm for sequencing jobs to minimize total tardiness.
Ann. of Discrete Math., 1:331-342, 1977.

E.L. Lawler.
Sequencing jobs to minimize total weighted completion time subject to precedence constraints.
Ann. Discrete Math., 2:75-90, 1978.

E.L. Lawler and J.M. Moore.
A functional equation and its application to resource allocation and sequencing problems.
Management Sci., 16:77-84, 1969.

J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity of scheduling under precedence constraints.
Oper. Res., 26(1):22-35, 1978.

J.K. Lenstra and A.H.G. Rinnooy Kan.
Complexity results for scheduling chains on a single machine.
European J. Oper. Res., 4(4):270-275, 1980.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems.
Ann. of Discrete Math., 1:343-362, 1977.

J.Y.-T. Leung, O. Vornberger, and J.D. Witthoff.
On some variants of the bandwidth minimization problem.
SIAM J. Comput., 13(3):650-667, 1984.

J.Y.-T. Leung and G.H. Young.
Minimizing total tardiness on a single machine with precedence constraints.
ORSA J. Comput., 2(4):346-352, 1990.

W.L. Maxwell.
On sequencing $n$ jobs on one machine to minimize the number of late jobs.
Management Sci., 16:295-29, 1970.

J.M. Moore.
An $n$ job, one machine sequencing algorithm for minimizing the number of late jobs.
Management Sci., 15:102-109, 1968.

A. Munier and F. Sourd.
Scheduling chains on a single machine with non-negative time lags.
Math. Methods Oper. Res., 57(1):111-123, 2003.

J.B. Sidney.
An extension of Moore's due date algorithm.
In Symposium on the Theory of Scheduling and its Applications (North Carolina State Univ., Raleigh, N. C., 1972), pages 393-398. Lecture Notes in Economics and Mathematical Systems, Vol. 86, Berlin, 1973. Springer.
Incorporating the results of discussion by Hamilton Emmons and John Rau.

B. Simons.
A fast algorithm for single processor scheduling.
In 19th Annual Symposium on Foundations of Computer Science (Ann Arbor, Mich., 1978), pages 246-252. IEEE, Long Beach, Calif., 1978.

B. Simons.
Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines.
SIAM J. Comput., 12(2):294-299, 1983.

V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevich.
Scheduling theory. Multi-stage systems, volume 285 of Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht, 1994.
Translated and revised from the 1989 Russian original by the authors.

V.G. Timkovsky.
Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity.
European J. Oper. Res., 149(2):355-376, 2003.

E.D. Wikum, D.C. Llewellyn, and G.L. Nemhauser.
One-machine generalized precedence constrained scheduling problems.
Oper. Res. Lett., 16(2):87-99, 1994.

W. Yu.
The two-machine flow shop problem with delays and the one-machine total tardiness problem.
PhD thesis, Technische Universiteit Eindhoven, Eindhoven, 1996.
Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1996.

W. Yu, H. Hoogeveen, and J.K. Lenstra.
Minimizing makespan in a two-machine flow shop with delays and unit-time operations is NP-hard.
J. Sched., 7(5):333-348, 2004.

WWW daemon apache 2009-06-29