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Abstract This paper reports on the aims, the approach,

and the results of the European project RACE. The

project aim was to enhance the behavior of an au-

tonomous robot by having the robot learn from con-

ceptualized experiences of previous performance, based

on initial models of the domain and its own actions in it.

This paper introduces the general system architecture;

it then sketches some results in detail regarding hybrid

reasoning and planning used in RACE, and instances of

learning from the experiences of real robot task execu-

tion. Enhancement of robot competence is operational-

ized in terms of performance quality and description

length of the robot instructions, and such enhancement

is shown to result from the RACE system.

1 Project Aim and Demonstration Domain

RACE (Robustness by Autonomous Competence En-

hancement) is a project funded by the European Com-

mission under the 7th Framework Programme and run-

ning from 12/2011 to 11/2014. The partners are those
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Örebro University

J. Hertzberg, M. Günther, S. Stock
Osnabrück University

L.Seabra Lopes, M.Oliveira, G.H.Lim, H.Kasaei, V.Mokhtari
University of Aveiro

L. Hotz, W. Bohlken
HITeC Hamburger Informatik Technologie-Center e. V.

institutes from which this paper is authored. This short

project report summarizes the RACE methodology of

working towards achieving these aims, and it sketches

main project results, as visible about half a year before

the end of the project.

The overall aim of RACE as set out in the descrip-

tion of work was

to develop an artificial cognitive system, embod-

ied by a service robot, able to build a high-level

understanding of the world it inhabits by stor-

ing and exploiting appropriate memories of its

experiences. Experiences will be recorded inter-

nally at multiple levels: high-level descriptions in

terms of goals, tasks and behaviours, connected

to constituting subtasks, and finally to sensory

and actuator skills at the lowest level. In this

way, experiences provide a detailed account of

how the robot has achieved past goals or how it

has failed, and what sensory events have accom-

panied the activities.

Contributions were foreseen in the description of

work to advance the state of the art along three lines:

1. robots capable of storing experiences in their

memory in terms of multi-level representa-

tions connecting actuator and sensory expe-

riences with meaningful high-level structures,

2. methods for learning and generalising from

experiences obtained from behaviour in real-

istically scaled real-world environments,

3. robots demonstrating superior robustness and

effectiveness in new situations and unknown

environments using experience-based planning

and behaviour adaptation.
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Fig. 1 The PR2 robot Trixi grasping mugs from the counter.

So the thrust of the project was clearly of a con-

ceptual nature. Yet, to demonstrate an integrated sys-

tem and to have it learn from experiences, a physical

robot and a demonstration domain are clearly needed.

An “academic” demonstration domain was used to fo-

cus on the conceptual issues rather than application re-

quirements, and to keep low the overhead for providing

permanently the real-life demonstration scenario and

for modeling it in a good simulation environment that

would allow project partners to work independently at

their sites between code integration events.

The demonstration domain is an AI and Robotics

classic: a (mockup) restaurant with a robot waiter. The

robot, Trixi, Fig. 2, is a PR2 with an additional RGB-

D camera on top of its head. The task spectrum of

Trixi is to serve guests in the mockup restaurant. Fig. 2

schematically shows one of a number of several scenar-

ios defined for the restaurant domain; these scenarios

are available both physically in a lab room and in sim-

ulation (Gazebo). Having such fixed scenarios allows

tasks to be executed under somewhat controlled en-

vironment conditions to compare robot performances

over different degrees of experience in the domain on

Trixi’s side.

In the sparsely populated scenario in Fig. 2, it would

make sense to give Trixi the order “Serve mug1 to guest1!”

or “Serve coffee to guest1!”, both yielding the same ser-

vice. It is also conceivable to teach Trixi how to serve:

“Pick up the mug at the counter, bring it to the guest

at table1 – this is how to serve a coffee”.

It is assumed that basic robot behavior (such as nav-

igation, object handling, object recognition) is available

on Trixi – actually, RACE has started from standard

capabilities available for a PR2 in ROS [18], cf. Sec. 2.1

for an explanation of the control architecture. Standard

restaurant action schemata for a waiter, such as serving

something to some guest, are available in a pre-defined

Fig. 2 Schema of an instance of the RACE demo scenarios in
the restaurant domain. The counter of Fig. 2 is the counter1

on the left. See text for more explanations.

form as Hierarchical Task Network (HTN) methods,

cf. Sec. 3.1 for more on planning in RACE. Trixi was

able to physically perform such restaurant standard ac-

tions in closed-loop plan-based control from early on

in the project, based on the control architecture ex-

plained later (Sec. 2.1). This state-of-the-art approach

was taken as the ground level of performance compared

to which competence could be enhanced from experi-

ence by methods to be developed in the project.

Now what are reasons and opportunities for com-

petence enhancement here? In a mundane domain like

a restaurant, there is an infinite set of possibilities for

variations of tasks to be executed in the light of ac-

tual conditions, even though the domain itself and the

actions for a waiter (human or robot) to perform are

highly schematized. These variations are the sources of

possible disturbances for Trixi’s execution – actually,

they are the sources of the brittleness of autonomous
robot performance in real-world settings that is so often

deplored. They would in general result in non-nominal

execution of the planned behavior, or in needed varia-

tions of the planned behavior at execution time. For ex-

ample, unknown at planning time, paths may be blocked

for the robot, the guest may have changed his seat on

the table, standard placing areas on the table may be

occupied by belongings of the guest, standard manip-

ulation areas for the robot to stand while serving the

table may be blocked, a newly arriving guest may inter-

rupt plan execution, and so on. Conditions on all levels

of description of robot performance (temporal, spatial,

causal, perceptional, kinematic, dynamic) may actually

deviate from the standard – no matter how the standard

is formulated in detail. The RACE idea is that actually

experiencing such deviations and learning ways how to

deal with them (cf. Sec. 3.4) should lead to more ro-

bust performance in the domain. Moreover, being able

to conceptualize such experiences and thereby to gen-

eralize them and make them amenable to the robot’s
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own reasoning would result in a transfer from concrete

experiences to classes of situations in which to change

or adapt the standard behavior.

2 Approach

It is apparent from the overall aim of RACE that the

project would face at least three methodological issues

(which it shared with quite a few companion projects).

First, a bootstrapping problem: to generate robot ex-

periences to learn from, the project had to rely on a

fully integrated and functional robot system in a suit-

able environment from the project start. Second, an

architecture problem: to learn from conceptualized ex-

periences of its own past behavior based not only on

external features (“sensor streams”), but also on the

internal control knowledge that led to generating the

past behavior, all that data and knowledge has to be ex-

plicit and available for learning. Moreover, to be able to

change its own behavior as a result of learning, the con-

trol knowledge yielding the behavior has to be explicit

for the control. Third, an evaluation problem: to demon-

strate competence enhancement after learning from ex-

perience, some performance metrics need to be used

that would allow a sensible before-after comparison.

This section sketches the RACE solutions to these

three issues.

The central point to solving the bootstrapping prob-

lem for RACE was early integration. The project has

generated in its first year a fully integrated and func-

tional robot in the restaurant domain with an initial

instance of its target control architecture (cf. Sec. 2.1)

in place. This was made possible by

– committing to a particular version of the above-

described demo domain;

– using a PR2 robot and ROS as readily available

hardware and software frameworks, respectively;

– using prior existing standard processing and reason-

ing modules as base systems wherever possible, e.g.,

for planning and sensor data interpretation;

– defining the internal knowledge-interchange language

based on a standard, namely, Description Logics;

– and committing early to the basic robot control ar-

chitecture, i.e., to a solution of the second problem

addressed above.

Of these items, we will only detail the architecture is-

sue, treated next; but we want to emphasize that the

cross-topic and cross-workpackage results achieved in

the project are to a large degree due to this early inte-

gration made possible in a joint effort by the partners.

The approaches to the control architecture and eval-

uation problems are described next in some detail.
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Fig. 3 The basic RACE architecture; modified from [21].

2.1 Control Architecture Approach

The cornerstone of the RACE architecture (Fig. 3) is

the Blackboard. It mainly contains fluents, i.e., ground

facts of the Description Logic (DL) ontology (executed

actions, world state propositions, etc.), with begin and

end timestamps. It is implemented as an RDF database.

We decided to use a classical, “flat” blackboard in the

project to allow for maximal flexibility of information

flow between modules, including reasoning and learning

modules, and for freely adding and exchanging versions

of modules. This strategic advantage clearly comes at

the cost of hard-wiring a bottleneck into the architec-

ture; yet, the benefit has outweighed the cost in RACE.

The other modules for perception, reasoning, plan-

ning and execution communicate by reading selected

types of information from the Blackboard, processing

this information and writing back their outputs. So the

Blackboard serves two roles: from the fluents on it, the

current state as well as past state information can be

derived; and it contains complete experience records,

which can be conceptualized later.

When a new planning goal is entered by the user,

an HTN Planner queries the Blackboard to build its

initial planning state, then writes the generated plan

back into the Blackboard. Initially, SHOP2 [13] was

used, later replaced by the planner sketched in Sec. 3.1.

The stored plan includes operators’ preconditions and

effects as well as the hierarchy of expanded HTN meth-

ods. The plan is picked up by the Execution Monitor,

which dispatches the planned actions to the robot plat-

form, mapping them to its closed-loop control modules.

During execution, the monitor logs the executed ac-

tions, as well as success or failure information, in the

Blackboard.

ROS [18], as used on Trixi, already provides many

capabilities (e.g., for manipulation or navigation) as

ROS actions; others were added. The robot provides

continuous data about its own status (such as joint an-
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Fig. 4 Principle of evaluation: the system’s behavior is com-
pared to a model of the ideal behavior for the specific scenario.

gles) as well as data from its sensors. The Perception

module discretizes this information into symbolic, time-

stamped fluents.

The OWL ontology stores the robot’s conceptual

knowledge. It provides a common representation for-

mat, from which the knowledge used by all other rea-

soners is generated. Spatial, temporal, resource and on-

tological reasoners as well as a high-level scene inter-

pretation module contribute higher-level semantic in-

formation to the experiences via the Blackboard.

Background processes responsible for experience ex-

traction (grouped in an Experience Extractor module)

and conceptualization (Conceptualizer) support a long-

term learning loop, resulting in more robust and flexible

future plans. The architecture is detailed in [21].

2.2 Evaluation Approach

To evaluate success for a given task in a given scenario,

we measure the compliance of the actual robot behav-

ior to the intended ideal behavior for that task in that

scenario. Fig. 4 illustrates this principle: the trace of

a given execution of Trixi is compared to a specifica-

tion of what the ideal behavior should be, resulting in

a “Distance to Ideal Model” (DIM) measure.

Discrepancies between the observed and the ideal

behavior can originate from errors of four different types:

Conceptual, Perceptual, Navigation and/or Lo-

calization, and Manipulation errors. The latter three

types of errors are, to some degree, platform specific.

Our metrics focus on quantifying conceptual errors.

Conceptual errors arise from discrepancies between

the knowledge used by the robot and the one encoded

in the specification of the ideal behavior. We call these

discrepancies inconsistencies. Again, they can be of four

types: (1) Temporal, (2) Spatial, (3) Taxonomical,

and (4) Compositional. The DIM metric chosen in

RACE is the weighted sum of the numbers of the in-

consistencies (1–4), respectively, lower DIM values sig-

naling better behavior.

In addition to estimating the effectiveness of learned

knowledge by DIM, the Description Length (DLen, [20])

of the instructions given to the robot to achieve a goal

DIM

DLen

Fig. 5 RACE’s aim: use as few as possible instructions (low
DLen) to achieve correct behavior (low DIM). The enhance-
ment of competence is indicated by the transition from the
solid line to the dashed line

matters. Normally, longer descriptions could yield bet-

ter DIM as suggested by the solid line in Fig. 5. After

learning from experiences, still successful or even more

successful (even lower DIM) behavior following shorter

instructions would be indicative of the effectiveness of

the learned knowledge. This may indirectly provide a

measure of how general the knowledge is, too, if applied

to a wide range of scenarios and initial conditions.

So, the general RACE aim of designing learning and

reasoning tools for a robot to autonomously and effec-

tively increase its competence was operationalized as:

make it possible for a robot to collect experiences al-

lowing it to perform at lower DIM and shorter DLen.

3 Results

In addition to the overall system behavior, RACE has

yielded a number of results in the individual modules

shown in Fig. 3. They are sketched next. Details are in

the references and on the website [19].

3.1 Hybrid Reasoning and Planning

To enable early integration as mentioned in Sec. 2, off-

the-shelf planners were used in the beginning of the

project. The goal was to analyze the limitations of the

state of the art and develop an integrated planning sys-

tem to overcome them. For task planning, HTN plan-

ning [5] proved to be useful for improving the robot’s

performance based on experience: the plan generation

itself is fast, and the plans are robust and have a struc-

ture that can be used for learning.

While employing the off-the-shelf SHOP2 HTN plan-

ner was good for early integration, it was evident that

state-of-the-art planning techniques were inadequate for

the purposes of RACE: none of them could leverage the

full knowledge that the project set out to learn from

experience. The key issue is that this knowledge is hy-

brid addressing diverse semantics. For example, Trixi
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should serve mug1 before the coffee gets cold, which

requires reasoning in temporal knowledge. Similar ar-

guments can be made about resource, spatial, causal,

kinematic, and other forms of knowledge.

With the aim of building a planner that could lever-

age the different types of knowledge learned by the

robot, we developed a general approach to hybrid rea-

soning: in a nutshell, it is based on a backtracking search

algorithm that systematically explores the Cartesian

product of sub-problems posed by the different frag-

ments of knowledge possessed by the robot. Knowl-

edge is represented as constraints (temporal, spatial,

resource and causal relations), and the algorithm en-

forces the mutual feasibility of all constraints through

backtracking and specialized hybrid reasoning proce-

dures, called meta-constraints; the system for handling

the constraint satisfaction problem (CSP) on these di-

verse knowledge levels is the Meta-CSP system [17].

Spatial knowledge in particular is represented in ARA+,

a novel spatial calculus that allows to uniformly ac-

count for metric and qualitative spatial knowledge in

the sense-plan-act loop. Details of the hybrid planning

approach and the KR formalisms used are presented in

[11] (see also videos at [19]).

Although capable of combining task planning with

other forms of reasoning, the approach alone does not

leverage sophisticated planning heuristics, nor does it

provide hierarchical decomposition capabilities in its

domain specification language. Therefore, HTN hierar-

chization and and decomposition methods were put on

top of the basic hybrid Meta-CSP planner, using the

SHOP2 Total-order Forward Decomposition (TFD) al-

gorithm for focusing search in the large combined search

space.

The notion of using different types of knowledge at

planning time was also leveraged for plan execution,

through what is informally called a “semantic” execu-

tion monitor. This module continuously assesses plan

feasibility in the light of additional information gath-

ered during execution, and dispatches planned actions

when their preconditions are fulfilled. As pointed out

in [8], the planner’s knowledge and that of the semantic

execution monitor need not overlap completely: some of

it may be execution-specific for improving robustness

and enabling early failure detection.

3.2 Prediction

RACE uses the high-level scene interpretation system

SCENIOR [2] for the robot to predict events and occur-

rences that may arise from a current situation. Trixi can

envision possible developments of the environment as

well as the impact that such developments may have on

its own activities. The robot may use the results of such

a prediction cycle to update the current situation be-

fore planning, thus producing more robust plans. For in-

stance, based on its past experience, the robot may pre-

dict the likely presence of an obstacle at a relevant area

(e.g., at one of the manipulation areas from which the

guest can be served in Fig. 2). When planning its path

towards the guest, the robot may therefore avoid such

likely occupied areas. In this approach the robot has

conceptual knowledge about occurrences in the world

and about its own activities, represented in the ontol-

ogy and in constraints expressed as Semantic Web Rule

Language (SWRL) rules. Such conceptual knowledge

is modeled or acquired by conceptualizing experiences

collected in the robot’s memory. Predictions are then

generated by constructing models for explaining both

incoming evidence and goals assigned to the robot as

parts of the conceptual knowledge, this way generat-

ing possible future events, as detailed in [9]. Moreover,

SCENIOR’s prediction mechanism was enhanced with

additional functionalities enabling the robot to extract

not only the independent events from a given prediction

but also to rank alternative predictions by their proba-

bility based on how frequently the predicted activities

occurred in the robot’s past experience. This will allow

the system to focus on the causally relevant part of the

most likely prediction during symbolic plan creation at

planning time.

A second prediction approach in RACE [22] pro-

vides prediction during plan execution. It predicts non-

nominal conditions, thereby improving system robust-

ness. Non-nominal conditions in that sense are condi-

tions that cannot be considered at planning time with

purely symbolic planning approaches, such as robot ma-

nipulation failures, collisions, or object toppling events.

This approach bases prediction upon commonsense physics,

which is provided by the physics engine ODE used in

Gazebo1, the standard simulator in ROS. This allows

detailed execution failures to be predicted, such as col-

lision during manipulation or toppling of carried ob-

jects while the robot is moving fast in the environ-

ment. Based on the underlying simulation, this predic-

tion is capable of delivering physics-based effects and

results, thus generating possible future events, as well as

simulated sensor data. To trigger prediction, so-called

“imagination operators” are added to the planning do-

main. They are related to ordinary robot actions such

as picking up an object and are predicted (executed in

simulation) before being executed in reality. We refer

to this prediction approach as robot imagination.

1 http://gazebosim.org/
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Fig. 6 The object perception and learning system interface.

3.3 Object Perception and Anchoring

The object perception system creates and maintains a

representation of the locations of objects in the scene

based on RGB-D data. This involves a set of capabilities

organized as a pipeline:

– search the scene for objects not previously detected;

– visually track the detected objects to estimate their

current poses;

– extract object features and recognize their categories

based on learned knowledge;

– anchor perceived objects to symbolic instances in

the blackboard.

The system must store object perception data as

well as object category knowledge. However, the char-

acteristics of perceptual information in general differ

much from those of semantic information: while seman-

tic information is symbolic and relational, perceptual

data is typically numeric. To accommodate efficient stor-

age and retrieval of both types of information, the RACE

architecture features two memory systems working in

parallel: a semantic memory system (the blackboard)

and a perceptual memory system, cf. Sec. 2.1.

Three main design options address key computa-

tional issues involved in processing and storing percep-

tion data: a lightweight NoSQL database (leveldb) is

used to implement the perceptual memory; a thread-

based approach with zero copy transport of messages

is used in implementing the modules; and a multiplex-

ing scheme for processing different objects in the scene

enables parallelization.

Object categories are learned with user mediation,

as described in section 3.4, and stored in the perceptual

memory. An anchoring module aggregates information

from the object trackers into a probabilistic graphical

model of all objects in the scene (including those not

currently in view). Next, it uses probabilistic knowl-

edge about typical geometric context between objects

to jointly classify all objects. Finally, it updates the

poses and object categories of objects on the blackboard

to reflect the new maximum a-posteriori configuration

of objects. In this way, object category symbols and ob-

ject symbols used in semantic memory are grounded in

the perceptual memory [4,16]. The RACE object per-

ception system is fully integrated in the PR2. A video

demonstrating this is available2.

3.4 Learning

Learning is central to RACE, where the robot uses

static and dynamic experiences to learn about static

scenes, the environment, and its own activities for en-

hancing its competence to operate in its environment.

The human plays an important role in the robot’s

learning process. For instance, the human can teach

categories of objects, methods for performing tasks and

failure recovery strategies. An ontology of user instruc-

tions was defined and a simple user interface developed

for this purpose. Experience extraction modules were

developed to filter, segment and transform the raw data

stream, producing experience records stored in memory.

Segmentation and filtering of experiences are largely

based on heuristics. In the case of supervised experi-

ence acquisition, experience extraction is triggered by

teaching actions from the user [10]. These experiences

are then conceptualized, leading to the formation and

update of different concepts.

An object conceptualizer was developed to support

the learning and recognition of object categories in an

open-ended way [7,16]. This means that neither the

categories nor the observations (experiences) that will

support the learning are known in advance. Through

pointing and labeling, a user triggers the extraction and

recording of an object experience, and the respective

conceptualization (see Fig. 6). An instance-based ap-

proach is adopted, in which an instance is stored when

the robot fails to recognize its category. Recognition

uses a nearest-neighbor approach with a distance mea-

sure normalized by an intra-category distance. Target

objects too far from the known categories are judged to

belong to an unknown category.

For more robust and flexible future robot task plans,

an approach was developed to support the extraction

and conceptualization of robot activity experiences [12].

After applying temporal segmentation heuristics, the

experience data (a set of occurrences) is filtered us-

ing a graph simplification method based on ego net-

2 http://youtu.be/XvnF2JMfhvc
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works [15]. Robot activity experiences are then concep-

tualized through deductive generalization, abstraction

and feature extraction. The result is an activity schema

that can be used as a method to solve future similar

problems as well as a guide (or heuristic) to solve re-

lated (not strictly similar) problems.

To operate in an environment, it is important for

the robot to understand the static scene layouts, as the

scenes give the context for certain tasks, such as objects

and activities to expect. It is also desirable for robots

to be able to use human supervision and learn from dif-

ferent vague and incomplete input sources (perception,

gestures, verbal and textual descriptions etc). In the

RACE project, we approach this problem by convert-

ing data from different sources into relational format

using spatial and temporal relations and then convert-

ing this data into graphs [4]. Information from different

sources can be compared and contrasted using graph

similarity measures to learn relational knowledge and

models. The results obtained in the restaurant domain

where we ground language in perception are encourag-

ing, although some of the components (robust percep-

tion and natural language parser) need improvement

for the whole system to be completely automatic.

The robot should also be able to recognize envi-

ronmental activities so it can react appropriately. The

RACE approach is based on qualitative and quantita-

tive spatio-temporal features that encode the interac-

tions between human subjects and objects in an ab-

stract and efficient manner [3,23]. As a part of this re-

search, we are constructing a semantically rich bench-

mark video dataset characterizing typical (simple and

compound) environmental activities found in restau-

rants, which will be made public upon completion.

In RACE, robot activities are described by com-

positional hierarchies connecting activity concepts at

higher abstraction levels with components at lower lev-

els, down to action primitives of the robot platform.

An obvious learning curriculum is therefore to let the

robot construct new compositional structures based on

existing activity concepts. In an approach described in

detail in [14], Example-Based Compositional Learning

(EBCL) is realized by constructing tentative concepts

from examples and merging the concepts by comput-

ing a Good Common Subsumer (GCS), approximating

a Least Common Subsumer (LCS, [1]). For example, a

new concept “ServeACoffee” was constructed from ser-

vices to guests at varying positions, performed with de-

tailed instructions. EBCL suggests innovative solutions

for at least three aspects: (i) Relevance analysis, i.e.,

determining objects and relations which are relevant

for a new activity concept, (ii) a learning curriculum

where positive examples lead to a learnt concept with

monotonously increasing generality, never surpassing

the intended concept, and (iii) a DL-based KR frame-

work that can be mapped into graphical representations

as used in the structure-mapping theory of Cognitive

Science [6]. Besides learning from positive examples,

EBCL also includes concept adaptation (generalizing

a tentative concept to be applicable to a new situation)

and concept refinement based on negative examples.

4 Summary of Achievements

The RACE project has developed, implemented and

demonstrated in an integrated approach a robot con-

trol system able to improve its behavior by learning

from conceptualizations of its own execution experi-

ences. Central achievements include:

– a general approach for concurrently reasoning about

diverse types of symbolic and metric knowledge, based

on the notion of constraint reasoning at different

levels of abstraction (Meta-CSP);

– Meta-CSP based algorithms for planning with do-

main specifications that include spatial, temporal,

resource, causal and ontological knowledge;

– an approach to plan-based robot control that allows

planning knowledge about deliberate robot behavior

to be complemented by semantic execution monitor-

ing and prediction;

– an object perception and learning system that learns

object categories in an incremental and open-ended

fashion with user mediation;

– an approach to learn conceptual activity descrip-

tions from few examples and apply them to future

tasks (“competence enhancement from experience”);

– a method for grounding noun phrases connected by

spatial relations in perceived static scenes.

To demonstrate an increase of robot competence, RACE

has shown instances of DLen reduction by learning and

of DLen and DIM reduction by handcrafted changes

(“serve coffee” example). The final demonstrator, to

be finalized after publication of this paper, will include

instances of learned DLen and DIM reductions in the

restaurant domain.
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