
Dynamic and interactive
visualization of weather data with

SVG

Keywords: Geo-information, Application building

Ralf Kunze
Research and teaching assistant
Institute of Computer Science, Osnabrueck
Albrechtstraße 28
49069 Osnabrueck
Germany
rkunze@uos.de

Biography

Dipl.-Systemwiss. Ralf Kunze, born 1973 in Oldenburg,
has graduated in applied system science from the
University of Osnabrueck in 2001. The topic of his diploma
thesis has been the development of a Macromedia Flash
generator for interactive visualization of XML based data.
He works as a research and teaching assistant in the
multimedia group of the institute for computer science at
the University of Osnabrueck. He supervises several
diploma and bachelor theses mostly in the domain of
geographical information systems and other data
visualization with SVG. He has a focus on web publishing,
data visualization and mobile computing. In cooperation
with the Max-Planck-Institute in Hamburg he pursues his
PhD with the development of a real time climate data
visualization tool in SVG.

Seite 1 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Robert Mertens
Research and teaching assistant
Virtual Teaching Support Center at the University of Osnabrueck
Schloßstraße 9
49069 Osnabrueck
Germany
rmertens@uos.de

Biography

Robert has studied cognitive science at the University of
Osnabrueck. Currently, he is a PhD Student (computer
science) and working at the Virtual Teaching Support
Center at the University of Osnabrueck. He has been
working with SVG since spring 2003 to build an SVG-
based web-presentation interface for recorded lectures as
part of his PhD work. The main focus of this work is
interactivity and the implementation of a hypermedia
navigation concept for timebased media. The technical part
of it involves bringing together SVG, Realmedia and some
ECMA/Javascript. Apart from working on the interface, he
is also working on the recording process and on methods to
use lecturer interaction for navigation purposes.

Prof. Dr. Oliver Vornberger
Professor
Institute of Computer Science, Osnabrueck
Albrechtstraße 28
49069 Osnabrueck
Germany
oliver@uos.de

Biography

Oliver Vornberger, born 1951, graduated in computer
science from the university of Dortmund in 1976 and
worked as research and teaching assistant at the University

Seite 2 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

of Paderborn. After his PH.D. in 1980 he spend a year as a
postdoc at the University of California at Berkeley. Since
1989 he has a full professorship at the University of
Osnabrueck and is head of the multimedia working group
with a focus on web publishing and computer graphics.

Abstract

In many regions around the world, changes in weather conditions are
not a slow process. With the weather being likely to break up in a
matter of hours if not minutes every other day, people who have to
adapt to the weather highly appreciate sound and accurate weather
forecasts. As weather depends on a multitude of global and local
factors, however, weather forecasts require complex and time-
consuming calculations. On top of this, the resulting forecast data is
hard to read for the non-expert. Typically the data is visualized in maps
containing static pictograms. Compared to this, an animated weather
viewing tool can facilitate the users' understanding of the development
of a weather situation.

To implement such a tool, SVG seems to be the means of choice, as it
has begun to play an increasingly important role in the application
domain of GIS (Geographical Information Systems). This is mainly due
to SVG being an open W3C standard and it being XML-based. SVG is
thus coming with a document structure that is as easy to generate as it
is to manipulate in dynamic applications. Additional advantages of
SVG are dynamic reloading of information, interactivity, server side
generation, scripting and the fact that it is vector based.

The application presented in this paper depends on many of these
features as it brings together both static geographical data such as
borders, rivers and cities and weather data that is visualized
dynamically. Interactivity and scripting are crucial to the interface since
users need special views on the information depending on where they
are and what they plan to do. A family planning for a weekend trip to

Seite 3 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

the North Sea will most likely want a totally different view than an
event manager planning a concert.

In short, different needs require the interface to show different parts of
the weather chart in different spatial and temporal resolutions. In
response to this, the interface presented in this paper allows selecting
arbitrary rectangular regions within the overall map, zooming in and
out of these regions, showing weather development at specific hours or
as a time-compressed 24-hour animation.

The application behind the interface basically consists of three different
server side components: preprocessing of the weather data, organizing
data storage and handling the interface's query action by a number of
scripts. The data itself comes from the German Weather Service
(Deutscher Wetterdienst) and covers weather development for
Germany and parts of the bordering nations. As the application is still
under development the data used in the example is historical data that
was available for free. The preprocessing is done by a number of C and
Java programs. These programs restructure the data and convert it into
a format that is more appropriate to visualization. The data is then
stored in a MySQL database where it is accessible by geographical
position and time indices. This database can be accessed via a number
of PHP-scripts which are in turn used by the SVG-Template on the
client computer.

Since the data is delivered to the SVG template as an SVG group, it can
easily be loaded by the SVG template using SVG's getUrl and
parseXML functions. When the data is no longer displayed, it is
removed from the DOM tree. The same holds for text and graph based
information that can be displayed for a set of cities in the area covered
by the data.

However, not all actions performed by the interface require this
dynamic reloading of datasets. To a certain extend, zooming can
always be done using the graphical data already displayed and thus
using SVG's own zooming mechanism. Reloading is also not used for
fading in and out certain sets of data like temperature, air pressure or
precipitation. This allows keeping the interface's response time at a
reasonable speed. In some cases even a mix of reloading and standard
zooming is used. One example is adding certain details at a specified

Seite 4 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

zoom level to facilitate the visualization of local phenomena. Loading
higher resolution data when zooming in is another point where this
method is used.

Apart from describing the technical details of the interface,
preprocessing, data storage and communication between the different
components of the application, the paper will also give an overview of
current weather visualization tools. An example of the Interface can be
found at http://snowball.informatik.uni-osnabrueck.de/cgp/index.svg .

Table of Contents

1. Introduction
2. SVG and Flash
 2.1 Spread of SVG and Flash
 2.2 Synchronizing frames vs. synchronizing time
 2.3 File size and automatic generation of documents
 2.4 Streaming
 2.5 Scripting
 2.6 Conclusion
3. SVG Weather
 3.1 Server side data processing
 3.2 The Database
 3.3 Geography
 3.4 The Front-end
 3.4.1 SVG Template
 3.4.2 Dynamic reload
 3.4.3 SVG Scripting
 3.4.3.1 Manipulation of elements and attributes
 3.4.3.2 Loading data
 3.4.3.3 Manipulating the ViewBox
 3.4.3.4 Using tiles

Seite 5 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

4. Conclusion
Bibliography

1. Introduction
As with most complex data, weather data requires a considerable
amount of structuring and visualization to become understandable for
human use. Commonly, weather forecasts consist of a set of maps
showing isolines and isoareas representing temperature, air-pressure,
precipitation and so on [WalchFrater].

In print-media, these maps have to be static according to the static
nature of the medium itself. When delivered in continuous media like
films or computer animated graphics, however, the effect of
visualization can be further improved by representing weather
changes as dynamic developments.

TV stations around the world have employed this technique for years,
while most internet-based weather information services still rely on
static maps. At first glance, this is hardly understandable, especially
given the fact that the internet is becoming a major source for all kinds
of multimedia documents.

A more detailed inspection of the demands on an internet-based
weather forecast, however, reveals the differences between weather
forecast and other multimedia content. Most multimedia web contents
like video clips, games or audio documents remain up to date
considerably longer than weather forecasts. Also, weather forecast
has to be localised in order to be useful. An additional difference is
that a high degree of interactivity is desired to select spatial and
temporal clippings that fit the user’s information goals. The last but not
least important difference to this fictional content is that weather
forecasts have to be generated from real world data.

These facts impose a number of constraints to the production of high-
quality, internet-based visualizations of weather forecasts that do not

Seite 6 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

apply to other multimedia content. Especially the short-livedness of
the content and the requirement to compute an appropriate
visualization out of vast amounts of real world data call for fully
automated data processing. Added the need for interactivity, the
challenge lies not only in data processing but also in finding an
appropriate presentation format.

This paper presents both, an approach for processing weather data
that comes in the GRIB (Gridded binary) format [NOAA] and a web-
enabled viewer implemented in SVG. As data presentation is crucial
for the application purpose, the graphics format to be used for
presentation had to be chosen carefully. Since the visualization could
best be realized by vector graphics the two formats in question were
Flash and SVG. A closer inspection of both formats and a prototype
implementation of the viewer interface in Flash [Kunze][Stark] finally
lead to the selection of SVG.

The first part of this paper gives a detailed overview of both graphics
formats with a special focus on scripting, which mattered most for the
application. The second part describes the application front-end, back-
end and underlying implementation details.

2. SVG and Flash

2.1 Spread of SVG and Flash
Due to excellent marketing strategies, Macromedia Flash has become
widely spread in the last few years. Being integrated into many web-
browsers, the Flash viewer plug-in was easy to use for most internet
users. This rapidly led to an increased popularity of the format.

In March 2005, round about 90% of all browsers supported Flash
[Macromedia I]. An easy installation process and the plug-in
download size of mere kilobytes closed the gap for those who did not
already have the viewer installed on their computers. The small size of

Seite 7 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

the plug-in was especially important at an early stage of the viewer’s
distribution. After all, back in the 1990’ies when broadband
connections were not as common as they are now, download size
really did matter.

Another factor that heavily contributed the format’s popularity is
constituted by Macromedia’s constant efforts to make the viewer
availably for all common browsers and operating systems.

In comparison to Flash, SVG can only be viewed by a smaller group
of internet users. SVG viewers are deployed to over 100 million
desktops (29.10.2004) [W3C I]. If we suppose there are round about
500 million internet users, only 20% are able to view SVG contents.
One reason for this might be that SVG is relatively new. While Flash
was introduced in 1996 [Macromedia II], the SVG standard 1.0 has
not even been finished before September 2001 [W3C II].

Another reason might be the complexity of SVG which demands any
viewer plug-in to implement a considerably larger number of features
and effects than the Flash viewer plug-in. This did not only lead to an
increased download size of the plug-in software but also to a
significantly higher workload for those who wanted to write an SVG
plug-in for different browsers and operating systems. Many viewers do
not fully implement the SVG standard but only demonstrate that it is
possible to render SVG in a certain browser. In fact, the most features
so far have been implemented by the Adobe SVG plug-in, which,
however, does not implement the complete SVG standard [Adobe I].
On top of this, the latest version of this plug-in is only available for the
windows operating system.

Yet another fact that might account for the rather low spread of SVG
might be that it had not been integrated into any popular web-
browsers. Current developments like the Mozilla SVG Project
[Mozilla] and the latest version of the Opera web-browser [Opera]
though, are to change this situation soon, so it is most likely that SVG
will have a much larger audience in the near future.

2.2 Synchronizing frames vs. synchronizing time
In Macromedia Flash, synchronization is handled by using key frames

Seite 8 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

[Flashkit]. Much like in a cartoon movie, an animation is split up into a
sequence of pictures. Object positions between these key frames are
interpolated to allow for fluid movements. In graphics terminology this
is called tweening. This technique is especially useful for playing
complex animations on slow computers. In case the rendering uses
too many resources, frames can be left out to save computing power.
Frame based navigation within Flash animations is another point
where the use of key frames shows its strengths. The state and
position of objects at the desired time can easily be computed using
the data of the nearest key frame. However, frames do not allow for
precise timing of animations. Whereas the frame in which an
animation is supposed to happen can be specified, there is no means
to start an animation between two key frames.

SVG features time based placement of animations. This way,
animations can be planned far easier than in Flash. Any schedule
describing what happens when can directly be encoded in SVG.
When more complex applications are considered, though, this
approach causes some problems. In time based navigation, the state
and position of each object has to be calculated anew whenever time
is manipulated. Especially in documents using many concurrent
animations, this can cause considerable delays [Fox].

2.3 File size and automatic generation of
documents

Macromedia Flash is a binary format. It can thus not be easily edited.
For a long time, Macromedia did not publish any specification of the
format. Finally, however, the specification has been made available,
mainly for marketing reasons [Macromedia III]. This lead to the
development of a number of applications that could be used to edit
Flash, which in turn lead to a further spread of the Flash format. The
fact that Flash was not built to be generated automatically resulted in
documents not being configurable by the server. In order to solve this
problem, Macromedia introduced the so called Flash Generator. The
software featured the ability to swap predefined symbols on the
server. This way, customised films could be created on the server and
sent to the user. Due to its rather high price, however, the software did
not rally break through. Another interesting fact is that publishing the

Seite 9 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

format’s specification did not lead to the development of many
applications that could generate Flash dynamically. Flashweather
[Kunze][Stark], the ancestor of the application presented in this
paper is one of the few exceptions.

Concepts like Macromedia Flex [Macromedia IV] or Openlaszlo
[OpenLaszlo] have improved this situation, but they are still too
limited to seriously tackle the problem of dynamic data visualization.
The binary structure of Flash files has proven to be a very good
decision when it comes to file size. Efficient packaging strategies are
employed so that file size can be kept at a more than reasonably low
level.

Generation of SVG documents is kept as easy as it can be. Designers
who are familiar with the document format can create impressive
designs even with a simple text editor. Since SVG is XML-based, it is
well structured and easy to edit. It is designed to automatically modify
or generate an SVG document with the help of scripts or server sided
applications. This advantage however is directly linked to SVG’s
biggest problem, its immense file size. One very simple and also very
effective approach to counter this problem is using the ZIP algorithm
to compress the data [ShigeruMasaru]. Reuse of CSS styles is
another strategy to keep SVG files small. Shapes’ properties can be
stored inside definition tags (<def>) and can then be used repeatedly
throughout the document. This is especially effective when styles are
used many times. In some cases it also pays off to re-use predefined
shapes. These shape do not have to be used the way they come as
arbitrary properties of predefined shapes can be altered whenever
necessary. The definition of text fonts for often used fonts can also
have a considerable impact on file size. Storage of different polygons
and lines that do not overlap but that do have the same colour etc. are
another way to reduce file size of SVG documents.

2.4 Streaming
Macromedia Flash is designed to be streamed. This can best be
explained by taking a look at the format’s internal file structure
[Macromedia III]. Macromedia Flash (also called SWF) consists of so
called tags which are stores in records. SWF has tags for shapes,

Seite 10 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

animation commands and script command. Tags can refer to other
tags but only if the tags referred to are placed closer to the start of the
file than the referring tag. This way, animations can already be played,
even though they are not completely loaded. SVG is not limited by this
constraint. The down side of this is that no animation can be shown
before the document is loaded completely and before the DOM is
constructed. While this constitutes a major disadvantage, it can be
easily circumvented by extending the DOM dynamically. The functions
getURL() and parseXML() that come with the Adobe SVG plug-in
allow for reloading parts of an SVG document at any time. This mighty
feature allows to first load the start of an animation and to extend it
later by loading further elements. In contrast to Flash, these elements
can even be selected by the user at run time. In the end, this makes
SVG much more flexible and dynamic than Flash. It has to be noted,
however, that these two functions are an extension that works only in
the Adobe SVG viewer [WinterNeumann].

2.5 Scripting
SWF incorporates ActionScript [Moock], which is an easy to learn
script language that has all elements necessary to manipulate a Flash
animation. Controlling the timeline of an animation is rather easy.
Jumping back and forth in the timeline can be rendered almost
instantly because of the key frames used (see above). Since the
language is bound to the elements used in a film, existing elements
can be changed, but it is impossible to add new elements or to
remove existing ones.

SVG can be manipulated by different scripting languages. Since it is
represented as a DOM, it can be accessed by any scripting language
that can manipulate a DOM in a web-browser [WilliamsNeumann].
Among the most common of these languages are JavaScript, Jscript,
ECMA Script and Visual Basic. A disadvantage of this technology is
that different scripting languages do not work in all web browsers.
Adobe’s SVG plug-in for instance has its own ECMA Script
implementation to overcome this problem. Using no platform-specific
script language and sticking to the plug-in's ECMA Script is a good
way to avoid the danger different web browsers.

Seite 11 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

As SVG scripting manipulates the DOM, it provides a comprehensive
set of methods to alter the documents structure. As mentioned above,
the functions getURL() and parseXML() even allow to dynamically
load data from a server and adding this data to the DOM in run time. It
is also possible to create totally new nodes in the DOM.standardized
ECMA

Existing tags can be extracted using their ID value and then changed
by manipulation of their attributes. This technique even allows
changing an animation while it is already running. This makes
scripting in SVG a mightier tool than in SWF.

2.6 Conclusion
Macromedia Flash is well suited for creating sophisticated websites.
Flash generators like Macromedia Flex or Openlazlo enable even
users with little experience to create Flash films. Flash is widely
spread and the majority of web users can watch Flash on their
browsers.

When it comes to visualization of complex or dynamically changing
data, however, Flash is not really the means of choice. The
experience with weather visualization described in this paper has
shown that SVG is much better for this task. SVG though still has a
number of problems which will in part be solved by time while others
demand some work.

The comparably low spread of SVG definitely falls into the first
category. SVG can easily be generated automatically and is thus a
good means for visualizing data sets. Because of this, SVG is already
used in a large number of scientific contexts. Time based navigation in
SVG, however, is still an issue demanding attention.

3. SVG Weather

Seite 12 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

The application presented here uses an SVG front-end to deliver an
interactive visualization of weather forecasts in different zoom levels.
To realize this, a range of techniques is required on both server and
client side. The client side front-end is written in JavaScript to allow for
interactive zooming and dynamic reloading of data from the server.
Server side computation is done by a number of scripts in PHP that
are called from the client side part of the application. There are an
additional number of scripts and java applications running on the
server for off-line data processing as well as a database in which the
data itself is stored.

The overall structure of the application can be described as follows:

an interactive SVG front-end for visualization and dynamic reload
of the forecast data
a number of PHP pages on the server for communication from
front-end to server
a database in which the weather forecast data is stored
scripts and applications for updating and pre-processing weather
forecast data in the database

Seite 13 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 1: Application
design

The following sections will describe these parts in detail.

3.1 Server side data processing
The first step is pre-processing of the forecast data. As weather
forecasts come as a set of raster data, it is necessary to transform the
data into isolines and isoareas. This is done by the modified line
following algorithm developed by [WilliamJSnyder]. The algorithm
traverses the raster once for each isovalue. It successively constructs
isolines that are later transformed into polygons.

Further processing becomes necessary as the visualization should
allow for multiple datasets to be visualized simultaneously. This
requires each dataset to be at least semi-transparent so that the view
of data visualized on a lower layer is not obstructed. This means that
isoareas describing the same feature like temperature can not simply
be arranged one on top of the other. Instead, the shape of the smaller
polygon has to be cut out of the larger one. This leaves the larger
polygon as some kind of doughnut with a hole in its middle while the
smaller polygon remains unchanged. To determine which polygon is
the larger one, a basic property of isoareas is used. As isoareas do
never overlap, one area lies always completely in or out of the other
(See fig. Figure 2).

Seite 14 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 2: Isoareas

It is thus sufficient to check whether one point of a polygon lies inside
another polygon. Another fact that facilitates testing is that an isoarea
with isovalue k can only be contained in isoareas with isovalues k -1
or k + 1.

Building one of the doughnuts is very easy because of the way in
which polygons are described in SVG. The path description of the
inner polygon can simply be added to the path description of the outer
polygon without any further modification. The moveto command at the
beginning of the smaller polygon’s path description has to be copied
into the new path description, too. Fig Figure 3 shows the description
of a resulting “doughnut” polygon. The coordinates from the
surrounding polygon are named x1, y1 to xn, yn, the coordinates from
the inside polygon are named a1, b1 to an, bn.

<path d=“M x1,y1 L x2,y2 x3,y3, x4,y4 ... M a1,b1 L a2,b2 a3,b3,
 style=“fill-rule: evenodd; fill:RGB(0,15,200); stroke:black

Seite 15 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 3: A doughnut
polygon

Another feature that requires additional server side pre-processing is
the city weather forecast overview shown in fig Figure 4.

Figure 4: City weather
forecast

The overview describes data like temperature or precipitation in
diagrams at different granularities (hour, day and week). To make this
data available by city, the data corresponding to the geographical
coordinates has to be collected by a script.

3.2 The Database

Seite 16 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

The database used is a MySQL database containing a total of about
137 MB in 2860 tables. This size corresponds to a seven day forecast
for the area of Germany. The tables can be separated into five
groups:

Weather for Germany: geographical coordinates and
corresponding weather data.
Tile weather: coordinates and weather data of a clipping
Tiles: data for each tile
City specific data: name and coordinates
Temperature table: colour values used to visualize temperature
values.

Connections to the data base are implemented using both, Java and
PHP. The transformation of the information stored in the database into
SVG is realized using two different strategies. One part of the data is
already stored as SVG while the other part is generated on demand.

The most common and the most computationally intensive elements
are created in a pre-processing step and stored on the server already
as SVG. This includes the map of Germany as well as isolines and
isoareas for temperature, precipitation and cloudiness. Other
information like city based temperature or precipitation overviews are
transformed on demand.

Due to the necessity of complex algorithms to compute isolines and
isoareas, the processing of data to be stored as SVG on the server is
done in Java. Whenever new data is put on the server a number of
Java programs start the transformation.

The dynamic processing for on demand generation of SVG is done
using PHP. The reasons for this are that PHP can easily interact with
MySQL and that it is open source software.

The client software can start a PHP script on the server by calling the
getURL() function in the Adobe SVG plug-in. In turn, the script starts a
MySQL statement, transforms the result into SVG and sends the SVG
back to the client. On the client side, this SVG is integrated into the
DOM by using parseXML().

The combination of these techniques has lead to very high degrees of
both, performance and efficiency.

Seite 17 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

3.3 Geography
The map of Germany is generated using shape files. In shape files, geographical
information is stored as vector based data, which facilitates the conversion to
SVG. The shape files are first converted into MapML, an XML based description
format. The resulting files are then transformed into SVG. A drawback was
constituted by the fact that the maps at hand contained a wealth of information.
Unfortunately this would have resulted in a map representation too large for our
purposes. As the map will only be static, however, some manipulation could have
done manually. This includes adding the most important rivers as well as
bordering countries. Information about the cities shown on the map is stored on
different layer [Dickmann].

Storing different kinds of information in different layers has by the way proven to
be a very good idea, as this approach helps to fade in and out different layers at
will. Using the group tag (<g>) together with a definite id has worked very well
to speed up this process.

Seite 18 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 5: Map of germany

3.4 The Front-end
Apart from visualizing the data, the user interface offers a menu which
enables the user to zoom in and out and to control which kind of
information is shown. The viewer’s own zooming function is disabled
to prevent zooming in and out of the control interface which is
implemented as an SVG element. Another advantage of controlling
the zoom function via a menu is that a number of intermediary scripts
can control which data is shown at a certain zoom level.

This can speed up both rendering and loading considerably since the
initial graphics can be kept simple. Further objects can be loaded and
added into the DOM when needed. Objects that are no longer needed

Seite 19 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

can be removed. This is especially helpful since the Adobe SVG plug-
in has shown to slow down immensely when many objects are stored
in the DOM. The dynamic manipulation described above can keep the
DOM reasonably small at all times.

The front-end itself can be divided into three major parts. The first
contains the menu and placeholders for a number of elements. This
part will be called template. The second part is the reloadable
component containing city diagrams, isolines and isoareas. The last
part comprises a number of scripts that control the application. Apart
from increasing the application’s dynamics and flexibility, his design
has also further a modular development approach.

The following paragraphs explain each of these three parts in detail.

3.4.1 SVG Template
The SVG that contains the control elements is the so called template.
Both, layout and menu elements are specified. The template does not,
however, contain the data to be shown, or the scripts to be used. This
way, a designer can build the look and feel of the interface without
having to deal with the underlying code.

The interface allows manipulating time, the kind of information shown
(temperature, precipitation, etc.), presentation mode and zoom level.
Three additional fields are used as placeholders. According to loading
state and user action, these placeholders are replaced by the main
part showing the map, by a city diagram and by a smaller version of
the map showing which part is depicted in zoom focus.

3.4.2 Dynamic reload
Integration of dynamically loaded data can be realized by using the
SVG image tag. This tag allows dynamic integration of images as well
as complete SVG documents. In the document, this tag looks like this:

<image id=“karte“ x=“0“ width=“575“ xlink:href=“germanmap.svg“ />

Seite 20 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 6: SVG Template

The disadvantage of this approach is that data added this way
becomes assigned to a separate DOM. The reloaded data can thus
neither access the primary document DOM nor that of other reloaded
data [Watt et al.].

3.4.3 SVG Scripting
As mentioned above, SVG documents are represented in the viewer
as DOM trees. This means that nodes can be added, altered and
removed. In particular, this means that elements and attributes can be
changed and that new shapes can be added to the document.

3.4.3.1 Manipulation of elements and attributes

The root node of an SVG document can be obtained by calling the
method getOwnerDocument() on any node in the document. This

Seite 21 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

means that the script needs to have a reference to one of the
document’s nodes in order to work. Such a reference can be delivered
by the init method which is called when the document is loaded. This
method is automatically called with an event which belongs to the
document.

For further discussion of this example see [HauserWenz]. Once the
document is known, arbitrary nodes can be retrieved by calling
getElementByID():

The element can then easily be modified:

The ECMA-Script performing the task:

3.4.3.2 Loading data

Reloading data is not supported by ECMAScript. Adobe’s SVG plug-in
does, however implement additional scripting functions that can
integrate reloaded SVG elements as part of an existing DOM. A file
can be loaded from the server by the getURL() function, be parsed by
the parseXML() function and finally be integrated into the DOM as
follows.

var svgdoc; // define globally! function

init(evt) {
 svgdoc = evt.getTarget().getOwnerDocument();
}

elem=svgdoc.getElementById("rectangle1");

elem.setAttribute(„x“, „10“);

<rect id=“rectangle“ width=“100“ height=“100“ x=“0“ y=“0“

 fill=“blue“ onclick=“fillGreen()“/>

function fillGreen() {
 document.getElementByID(„rectangle“).setAttribute(„fill“,“green
}

function loadFile(fileName) {

Seite 22 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

The second argument to getURL() (in this case fileLoaded) is a
callback function that is called automatically with the data loaded from
the URL. The data is stored in a data object that contains a number of
fields. Among these are success and content. The content can be
transformed into an SVG node by calling the function parseXML(). The
resulting node can then be added into the existing DOM. To place the
node at a desired location, the function getElementByID() can be
used.

3.4.3.3 Manipulating the ViewBox

As mentioned above, the viewer’s own zooming function is disabled
for various reasons. The interface's zooming function is realized using
the SVG document’s “viewBox” attribute. For zooming, the dimensions
of the viewBox remain constant but the size of the area that is shown
in the viewBox is shrunk. The specified area is then automatically
enlarged by the Viewer to fit the viewBox. The following example will
explain the code for this procedure in detail.

The viewBox is defined as follows [Eisenberg]:

This way, an SVG that is 400 pixels wide and 400 pixels high is
displayed fully in the viewer. To zoom into the picture and to show the
inner part of it in double size, the viewBox is redefined as follows:

 getURL(filename, fileLoaded);
}

function fileLoaded(data) {

 if(data.success) {

 var node = parseXML(data.content,document);

 document.getRootElement().appendChild(node);

 }

 else {

 alert('Loading failed!');

 }

}

<svg x=“0“ y=“0“ width=“400“ height=“400“ viewBox=“0 0 400 40
 ...
</svg>

Seite 23 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

The ECMAScript code for this action can look like this:

This way, an area that was originally 200 by 200 pixels large, starting
at the coordinates 100, 100 is shown in the viewBox. Since the size of
the viewBox itself has not been changed, the area is shown in double
size.

An alternative technique is animating the viewBox. This allows for a
smooth visualization instead of the abrupt change that is caused by
the technique described above. An example for an animation that
slowly zooms into the image can look as follows:

After the zoom has finished, the user can move the enlarged area
within the overall map. The scripting part of this is done by adjusting
the coordinates of the visible area within the viewBox. If the viewBox
is defined by:

It can be moved 50 pixels to the right, so the underlying map will scroll
to the left:

The script code moving the viewbox in fluid motion looks like this:

<svg x=“0“ y=“0“ width=“400“ height=“400“ viewBox=“100 100 200
 ...
</svg>

 var elem = document.documentElement.getElementById('karte');
 elem.setAttribute('viewBox', xnew+' '+ynew+' '+newWidth+' '+newH

<animate id=“anim“ attributeName=“viewBox“ begin=“undefined“ dur=
 values=“0 0 400 400; 100 100 200 200“ fill=“freeze“/>

<svg x=“0“ y=“0“ width=“400“ height=“400“ viewBox=“100 100 20
 ...
</svg>

<svg x=“0“ y=“0“ width=“400“ height=“400“ viewBox=“150 100 20
 ...
</svg>

<animate id=“anim“ attributeName=“viewBox“ begin=“undefined“ dur=
 values=“100 100 200 200; 150 100 200 200“ fill=“freeze“

Seite 24 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

3.4.3.4 Using tiles

Zooming into the map results in a smaller part of the map being
shown in higher resolution. Without any further program-side
manipulation, however, this does not add more information. In the
weather viewer, additional data is reloaded depending on the zoom
level shown. At higher zoom levels, smaller towns and rivers are
shown to facilitate orientation. This additional information is only
reloaded for the area in question. This is done by organising the data
into so-called tiles. Loading only a tile instead of the whole map
means faster downloads and saving a considerable amount of client-
side computing time as the client has to manage significantly less
elements.

This technique is realized by splitting the map into a number of
overlapping tiles. The tiles overlap to guarantee that zooming into
areas that cover parts of two or more neighboring tiles does not cause
visualization problems.

Moving the area in focus to a neighboring tile automatically calls the
script for loading that tile so that the information resolution is always
maintained according to the zoom level.

Seite 25 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 7: Middle zoom
screenshot

Seite 26 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

Figure 8: High zoom
screenshot

4. Conclusion
The quality and interactivity of visualizing weather data in the world
wide web is highly dependent on the technologies and formats used.
Weather data is highly complex and changes in three dimensions:
time and space (which is in this context limited to two dimensions).
Because of this complexity, good visualization techniques are required
to make weather forecasts understandable for non expert users.

Seite 27 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

The project described has shown that interactive visualization of
dynamically changing weather data can be achieved with SVG and a
number of open source software components.

SVG is well suited for this task as it is an XML based format. This
way, SVG can be generated by any standard XML parser. Since SVG
documents can be built modular by using the <g> (group) tag, the
data can be structured in a most efficient way.

Another advantage of SVG is the format’s dynamics and interactivity.
Data can be reloaded, deleted, altered and animated. The whole
document can accessed via the DOM which can be manipulated by
languages like ECMAScript. This allows for a very high degree of user
interaction, which is not given for other formats like Macromedia
Flash. Adobe’s SVG viewer’s flexible reload of information enables the
use of template-like structures. This facilitates the development of
complex applications since single components can be built
independently from each other.

The paper has shown how SVG can communicate with databases and
servers. SVG can easily be connected to PHP and data can be
retrieved from servers either directly or via PHP scripts. This allows for
complex client-server interaction.

The weather visualization presented in this paper has shown how a
multitude of SVG’s features can be combined to build complex and
dynamic applications. Designing likewise applications with other
formats or programming languages usually requires much more effort.
This leads to the assumption that SVG will eventually overcome its
current limitation to GIS applications and that it will spread further in
the scientific application domain.

Bibliography
[WalchFrater]

Wetter und Klima 2004 Springer-Verlag Berlin Heidelberg

Seite 28 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

[NOAA]
Office Note 388 GRIB 28-Feb-2005
http://www.nco.ncep.noaa.gov/pmb/docs/on388/

[Kunze]
Ein Generator für Macromedia Flash zur interaktiven Visualisierung XML
basierter Daten 2001 http://www-
lehre.inf.uos.de/~rkunze/flashweather/Diplomarbeit/Diplomarbeit.html

[Stark]
Vektorisierung von raum- und zeitbezogenen Daten zur Visualisierung mit
Macromedia Flash 2001 http://www-
lehre.inf.uos.de/~fbstark/diplom/arbeit/html/

[Macromedia I]
Macromedia Flash Player Version Penetration 2005
http://www.macromedia.com/software/player_census/flashplayer/version_pe

[Macromedia II]
The History of Flash
http://www.macromedia.com/macromedia/events/john_gay/page04.html

[W3C I]
About SVG 29-Oct-2004 http://www.w3.org/Graphics/SVG/About

[W3C II]
Scalable Vector Graphics (SVG) 1.0 Specification 04-Sep-2001
http://www.w3.org/TR/SVG10/

[Adobe I]
Release notes and Support; Current support documentation
http://www.adobe.com/svg/indepth/releasenotes.html

[Mozilla]
Mozilla SVG Project 1-May-2005 http://www.mozilla.org/projects/svg

[Opera]
SVG - Scalable Vector Graphics http://www.opera.com/features/svg

[Flashkit]
How to make Flash movie
http://www.flashkit.com/tutorials/Getting_Started/How_to_m-mark-
1137/index.php

[Fox]
Interaktive Visualisierung von optimierten Zugablaufplänen mit SVG am
Beispiel des Bahnhofs Amsterdam-Schiphol 06-May-2005
http://www.inf.uos.de/prakt/pers/dipl/doc/pfox.pdf

Seite 29 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

[Macromedia III]
Macromedia Flash File Format (SWF)
http://www.macromedia.com/software/flash/open/licensing/fileformat/

[Macromedia IV]
Macromedia Flash MX Professional 2004
http://www.macromedia.com/software/flash/flashpro/

[OpenLaszlo]
OpenLaszlo 2005 http://www.openlaszlo.com

[ShigeruMasaru]
Geospatial Information Service System for Browser-phones utilizing PSVG
2002
http://www.svgopen.org/2002/papers/shimada_masaru_sitama__geospatial_i

[Moock]
Essential ActionScript 2.0 18-Jun-2004 O'Reilly and Associates

[WilliamsNeumann]
Manipulating SVG Documents Using ECMAScript (Javascript) and the
DOM 11-Feb-2005
http://www.carto.net/papers/svg/manipulating_svg_with_dom_ecmascript/

[WinterNeumann]
Example for getURL and parseXML 15-Feb-2005
http://www.carto.net/papers/svg/samples/get_parse.shtml

[WilliamJSnyder]
Algorithm 531: Contour Plotting 1978 http://portal.acm.org/citation.cfm?
id=355800

[Dickmann]
web-mapping und web-gis 2001 westermann

[HauserWenz]
Creating truly dynamic SVG
http://www.svgopen.org/2002/papers/hauser_wenz__scripting_svg/

[Eisenberg]
SVG Essentials Feb-2002 O'Reilly and Associates

[Watt et al.]
SVG Unleashed 2003 Sams Publishing

XHTML rendition made possible by SchemaSoft's Document Interpreter™ technology.

Seite 30 von 30Dynamic and interactive visualization of weather data with SVG

26.10.2006http://www.svgopen.com/2005/papers/DynamicInteractiveWeatherData/index.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

