MEDIAZMULT — A WIKI-BASED AUTHORING TOOL FOR
COLLABORATIVE DEVELOPMENT OF
MULTIMEDIAL DOCUMENTS

Author Name *
Affiliation *
Address *

Author Name *
Affiliation *
Address *

* Only for Final Camera-Ready Submission

ABSTRACT

media2mult is an extension for PmWiki developed at our ursitgr It provides functionality for embedding vau®
media files and script languages in wiki pagestifarmore media2mult comes with a cross media phibliscomponent
that allows to convert arbitrary wiki page sequent® print-oriented formats like PDF. This artigizes an overview
over the offered extensions, their functionalitg amplementation concepts.

KEYWORDS

wiki, multimedia, cross-media-publishing, authoriogl, XML

1. INTRODUCTION

At least since the founding of the free web engyettia Wikipedia and its increasing populamiki web,
wiki-wiki or justwiki are widely known terms in context of Web 2.0. Hewer, their exact meaning often
remains unclear. Sometimeski andWikipedia are actually used synonymously. The crucial fumatlity of
every wiki system is the possibility to edit wikiely pages directly inside a browser by enteringamy ¢o
learn markup language. Thus, manual uploads ofiquely edited HTML files are superfluous here. The
user doesn't even have to know anything about HbBkMéxternal HTML editors.

The browser- and server-based concept makes ify®#sat several authors can edit and revise commo
documents without the necessity of exchanging iaddpntly written and updated versions. Because most
wiki systems offer an integrated version managensgatem, authors can easily merge their changes and
revert selected passages to former stages. Theigeatally or deliberately applied changes of peted or
publicly accessible wiki pages can be taken backsecond.

At our university, a group of researchers raisedghestion whether it is possible to write sciéntiéxts
including mathematical formulas, graphics, audiolee and footnotes with a wiki system only. A fieth
request was an export function that should be @bkonvert an arbitrary set of wiki pages to acttriced
PDF document. As a result of this approach, the Bi@xtension media2mult was developed and is now
used in about 200 wiki fields installed on our cahtviki farm. On the one hand it is utilized by mya
lecturers to prepare lecture scripts, and on therdband students are asked to write their ternensapith
media2mult.

MR P T estarea - modlazieatt Mol vl <2
Fe Edt Yiew Go Bockmaks Tods Mep

L S S T]) oot el

Target Format: [FDF via) | [Opaes | [Putish

e Phsgin fUr das fred verfighare Wiki-System

Bel dem Autorenwerkneug mediaZmult handelt es si

Der Geaph der Funktion iz, 4] = (- /28 F 53] coa /25 7 33 Seht wie folge aus:d

Bestandtesie des Codes af Wunsch fartilich hervarheben lassen

Queitexte konnen mit Hie des (code!)-Elements aingebunden werden, wobel sich die syntaktischen l
=]

Do o 1810 Now Py Sy 1€ 5

Figure 1. Screen shot of a wiki page containinggsg\components
supported by media2mult (LaTeX formulas, footnotesle-based
music notation, gnuplot graphics, colored souraefo

2. PMWIKI

Because the termiki web just names a fundamental concept aontla complete standard, many different
wiki implementations have been developed over #s few years. The broad range of available systems
covers simple, minimalistic approaches programméH few lines of code, as well as complex dnghly
extensible wiki engines. The same is true for fbbhness of wiki input codes, concerning both syrdaax
available markup repertoire.

The open source implementatiBmWiki belongs to the more comprehensive wiki variantis actively
develop by Patrick Michaud using the script languB¢P. PmWiki offers a highly configurable architee
that caneasily be extended with own functionality or ariyr new skins. Thanks to this technical base, a
considerable PmWiki community has evolved whictpheksolving problems and offers free extensidres, t
so-calledrecipes.

After testing several wiki variants, the Center faformation Management and E-Learning of the
University of Osnabrick decided to introduce PmWikia centrally installed and supported platformefo
learning content. One reason for this decision thasconcept opagetrails, a technique that enables the user
to structure documents by defining ordered andrtetklists of links to wiki pages. In contrast tedlaWiki
— the wiki engine used by Wikipedia —, where pagesloosely connected by a pool of keywords, PmWiki
additionally allows the description of structuredblies of contents with chapters, sections and stibss.
This was a crucial precondition for the plannedligption area of media2mult.

From a developer's point of view, PmWiki primarigins its flexibility through two approaches: Hyst
the system uses freely definalharkup rules that makes it possible to increase the set of wupg wiki
commands. The second aspect is the use of so-ealieds which can lead to various interpretations of the
same page content.

2.1 Actions

A minimum requirement of all wiki systems is thaey must be able to produce two different viewshef
same page content: an edit view and a display vids.first one shows the page code in a text aveha it
can be edited by the user, and the second vievantashows the rendered result of the interpretete.co
PmWiki realizes these different views by applyiriffedent user-definablactions, which are passed to the

browser in the form of a GET parameter. Each actipecifier is assigned to an associated actionleand
The latter is automatically called when processingiki page and makes sure that the required HT btiec

is generated. In case of edit and display viewdbdicated actions look as follows, whereas theiexkpl
specification of actiotrowse is optional:

http://www.my-wiki-server.de?n=Group.Page&action=ed it
http://www.my-wiki-server.de?n=Group.Page&action=br owse

In both cases the content of paGeoup.Page is evaluated, appropriately processed and sertheo
browser.

Further examples of pre-defined PmWiki actions upl®ad for uploading of local files aneource for
retrieving the unprocessed page code. The crossanmedblishing component of media2mult defines an
additional action which triggers the process ofleming the necessary page contents and initidies t
conversion procedure.

2.2 Markup rules

Basically, the PmWiki core is nothing but a webdzhsext replacement engine. Its main purpose dsnsis
converting the components of the wiki input langaiag HTML equivalents. The central function callegd
the actiorbrowse is calledMarkupToHTML. At first glance it does exactly what its name lieg converting
the user input code to HTML. However, that's just tefault behavior. Because the text replacengent i
realized by iteration over an array of many usdirdble replacement rules, i.e. the transformatikes
place by a sequential application of regular exgoes, arbitrary conversion results are theordyical
possible.

The markup array is build up by so-callerkup rules that are evaluated every time the browse handler
is executed. A markup rule consists of a namelagive position in the markup array, a search pattand a
replacement expression. For example, the defaleltfou creating italic texts looks as follows:

Markup(™, "inline', "/"(.*?)"/",'\$1')

The first parameter specifies the rule name -- apostrophes in this case. The second parametsr tell
PmWiki where to put the rule in the markup arrakieTocationinline is a special place where all rules are
collected that affect single lines only. It's afswssible to put a rule before or after an alreagfindd rule.
With this mechanism the order in which the rules applied later on can be defined.

The third and fourth parameters specify searchrapthcement pattern, respectively. To sum up, this
markup rule makes sure that text patterns of tme ftrext” are converted to the HTML fragment
Text .

Consequently, extensions to the PmWiki syntax camealized by simply adding further markup rules.
Furthermore it is possible to completely replace pine-defined rule sets, e.g. to generate XML dFeba
code instead of HTML. In these cases the above iorad functionMarkupToHTML wouldn't produce
HTML, so its name is a bit misleading and concé@senormous potential.

The first PmWiki-based version publishing componehmedia2mult was realized exactly this way by
adding a rule set for generating DocBook-XMhat could in turn be transformed to various tafgemats
by applying the Daniel Veillard's DocBook stylests&eHowever, it turned out that the necessary dogblin
of all rules complicated the migration to more mcEmWiki versions. Moreover, the strict separatidn
content and layout intended by DocBook turned outd counter-productive in a wiki context becausesis
hardly possible to map all wiki markup elementDwkBook. Thus, most users were disappointed by the
conversion results. As a consequence, we're ndewfinlg a different approach described below.

! http://docbook.sourceforge.net
2 http://wiki.docbook.org/topic/DocBookXsIStylesheets

3. THE EXTENDED MARKUP OF MEDIAZMULT

A crucial prerequisite for acceptance of a newlyaduced authoring tool is the initial support ahétions
usually available in traditionally used applicagorsuch as footnotes, mathematical formulas anitraamp
graphics. All these aspects are normally omittechbwiki system, especially when it comes to suppgrt
vectorial versions of the document components. [@tter are important for high quality PDF genenatio

That is why the plug-in media2mult offers the nemiversal markup elemermbed that can be used to
integrate several media types into wiki pages. 3éteof supported formats includes EPS, FIG, SVGFSW
VRML, WAV, MP3, MIDI, MOV, MP4, and more. The filéo be embedded has just to be uploaded to the
server using PmWikis attach function. Afterwardsan be referenced, such as

(:embed file=graphic.eps:)

The conversion routines of media2mult make surepbasibly necessary format transformations takeepl
In case of an EPS graphic the file is converteldN& for web display and to an embeddable PDF shijppe
PDF document creation.

As you can see in the above list of supportedtfifees, media2mult allows the embedding of audio and
video files as well. These media are directly supgmbby most web browsers, so it's easy to referé¢nem
in wiki pages. The more difficult part is its comsi®n to PDF because there is of course no priented
equivalent of audio and video files. In this cabe, converter tries to automatically extract a evimage
(see figure 2). If this attempt wasn't successfulyarning message is generated and the user céoitexp
give an alternative image used for PDF creation:

(:embed file=audio.wav print-file=bild.gif:)

For embedding mathematical formulas, media2mutrefthe common LaTeX syntax. As in LaTeX the user
can distinguish between in-line and display forrsulBach formula is converted to a PNG image amphad
with the baseline of the surrounding text. Sinds tonversion process takes some time and camatigti
delay the page display, especially if the pageaioatmany equations, an MD5-based technique igegl

to avoid multiple conversions of the same formdlais procedure assures that a formula image is only
generated if it is displayed for the first timeibthe corresponding LaTeX code has been changed.

The technique of embedding code snippets of extedralarative languages like LaTeX has been
generalized and can now be applied to arbitraripistanguages and their corresponding processass. T
demonstrate this interface it has been exemplamlylemented for gnuplot, Metapost, POV-Ray, and the
music notation generat@li. The code for these processors can be eithertlgitgped into the wiki page or
uploaded in a separate file. The latter must bereetted by the mentionethbed statement, whereby the file
extension specifies the actual file format.

Besides the media file support media2mult offees itiarkup elementode for displaying source code
excerpts that can optionally be numbered as weltadsred syntactically. The code language is thereb
selected by a facultative attribute:

(:code file=bubblesort.java lang=java:)

The footnote creation syntax is similar to thosé@&feX. The footnote text must be given at the @latere
the footnote number is to be displayed. The tesdifitwill be moved to the bottom of the page, ewarthe
wiki page:

(:fn This is a footnote.:)

Since chapter and page sequence are defined bytrailki, and since there is intentionally no infmereviki
page order, the footnote numbering starts at 1nagaievery wiki page. The generated PDF documents
however contain continuously numbered footnotesth&t point, online and PDF version must obviously
differ because of their different nature. Dependimga unique trail it would be also possible to eyate

continuously numbered footnotes across wiki pagaswe classify the limitation to a single trailrpeiki
field as too restrictive.

© MediazMult / PmWikki - MediaZmult - Mp 4 - Mozilla Firefox

Datel Bearbsiten fnsicht Chronk Lesezeichen Extras Hife

@-®-®eo B0 wpraction=sc| | @ [[Gl<] 5000 & © -

Editing Media2mult.Mp4 Sheehielo
Save | Saveandedit| Preview | Cancel | athor: |
A @A AE

The following clip shows a trailer from the movie
T'Happy Feet'':

{iembed file = happy-feet-400-170.mpd :)

Surmmary: |

DI This is a minor edit
Sove| Saveandedt| Preview| Cancel

Edit | History | Source | attach File | Backlinks | List Group | Attributes | Group Attributes |
Page iast modified on May 05, 2008, 3t G2:43 PH.

skin canfig ** prawiki-2.2.27 **

Fertig o
% Media2Mult / PmWiki - MediaZmult - Mp 4 - Mozilla Firefox [S)BBX] § = result-1.pdf - Adobe Reader FEx
Datei Beatbeiten Ansicht Chronk Lesezeichen Extras Hife Exd Datei Bearbeiten Anzeige Dokument Werkzeuge Fenster Hife x
T T &0 11 y % *,
@-® @0 B0 w1 @ (G Qo |8l é- [l ee=]id @
Edit Page | Page History | Recent Changes A &

?nV\ﬁki Mp 4

[earch Go Mediazmult P

— 1 Media2mult.Mp4

€ & & et I 0 (SETER ediacmult.vMp @

Prowwviki

Latex

The following clip shows a trailer from the movie Happy Feet: . s = :

Saurce The following clip shows a trailer from the movie Happy Feet:

Code

Pixel images

EG

&I

P

vector graphics

EPS

FIG

GrnuPlot

PEC

WG

Flash

VRML Edit | History | Source | attach File | Backlinks | List Group | Attributes | Group Attributes |

Multimedia Page last modified on May 05, 2008, at 02:44 PM

Applet

Frames

Audio

Wave

mp3

Midi & o
Fertig o 210%297mm £ | >

Figure 2. media2mult's media converter extractpcegiew image from the embedded MP4 video thas&las a
replacement in the created PDF document (bottoht)rig

4. REALISATION OF THE MEDIA EMBEDDING FUNCTIONALITY

The automatic processing of various media typesrims to the more complex programming aspects of
media2mult. In order to ensure the extensibilitytted plug-in a unified class has been developedth@n
basis it is possible to integrate new media forhaatdlers with minimal effort. Usually, only a feiés of
code have to be written to support a new file farma

As shown in figure 3, the file types have beendbd into the four categorieésage, audio, video and
script. Categoryscript represents all script languages, like gnuplot @féX, that describe images, audio or
video objects. All four classes are derived from lbiase clasBlediaObject which provides the fundamental,
by means of template methods implemented convefsiactionconvert. In case of success it returns a new
MediaObject according to the specified paramefBng specialized methoaseateMO of the child classes
specify the steps to be executed to create a nobiiat of the particular type.

In order to take advantage of these methods, thetfiing to do is to create an appropriate mebjea
of the file referenced in thembed statement. This task is handled by the clslesliaObjectFactory. It
provides a static method that determines the ditenit and creates a corresponding object. A fohgvaall

to the object'sonvert method produces a new object of different type. &@ample, if we want to extract a
preview image in PNG format from a Flash video &g ase this code:

$video = MediaObjectFactory.createByExtension('vide o.flv");
$image = $video->convert('png’);

The actual conversion tasks are not directly hahthe media2mult but delegated to various open sourc
command line tools, like ImageMagicléenvert, the video tooffmpeg or the SVG convertebpatik. Their
conversion results are finally stored in separalgef's segmented by wiki pages and media types.

MediaEmbedder

+ getHTML() : string
+ getWikiXML() : string

MediaObject
NP - wikipage : string
\ MediaObjectFactory \ | - filename : string
1+ convert{targetFormat : string) : MediaObject
‘ + createByExtension(ext : string) : Mediaobject‘ + createMO(targetFormat : string) : MediaObject
+ getHTML() : string
+ getWikiXML() : string

ImageObject

AudioObject VideoObject ScriptObject |

FlashVideoObject | GnuplotScriptObject LaTeXScriptObject

LaTeXMathObject

Figure 3. Excerpt of the class hierarchy used idia#mult to uniformly process different media types

Example: Embedding of an EPS file

To illustrate the conversion process a bit more nae take a closer look at the embedding procedtism
EPS graphic. As stated before, the user just hapltzad the file using PmWiki's attach mechanism.tie
wiki page he or she adds taebed statement that references that file:

The following figure shows the rendering pipeline o f OpenGL:
(:embed file=rendering-pipeline.eps transparent=wh ite:)

The first line of this example consists of textyorBecause there are no special markup rules &n péxt, it
will be displayed unchanged in the browser. Ingkeond line the text replacement engine findgraoed
statement. The corresponding markup rule initiftesconversion process.

media2mult now recognizes that the file formathe teferenced graphic cannot directly handled by th
browser an must be turned into a bitmap imagetiisipurpose the command line taohvert is called:

convert -transparent white graph.eps graph.png
The optional transparency parameter is passedrieert and makes sure that all white areas of the graphic

become transparent. In the second step the aettalplacement takes place: PmWiki substitute rticed
statement by the HTML fragmestmg src="graph.png"/> . The result is shown in figure 4.

E) Media2Mult] Pmviiki’- MediaZmult - EPS = Mozilla Firefox EEE) @ Media2Mul)/ Pmiiki’= Mediazmult = EPS = MozillalFirefox 2B
File Edit View History Bookmarks Tools Help File Edit View History Bookmarks Tools Help 3

@ - - & &% | @ - [http//mediazmult.uos.de/pmwiki/pmwiki.pl| ~| @ [[G- al| @ - - & @ ® - [0 httpz/mediazmult.uos.de/pmwiki/pmwiki.p! [+ @ (G- L
Edit Page | Page History | Recent Changes [~
Editing Media2mult .EPS show Help Rwi Eps
save | save and edit| Preview | Cancel | o thor T;:S‘R_ sl £ i
A eEPA N AE

Text
[rhe following figure shows the rendering pipeline of OpenGL: PmWiki

i The following figure shows the rendering pipeline of OpenGL

Code

@ 4 © Target Format: |FDF (via FO) ~| Options| Publish Page

(:embed file=rendering-pipeline.eps transparent=white:)

pixel images
JPEG
GIF
PNG

Vector graphics
Eps
FIG
Gnuplot
PEC
SVG
summary: | e
VRML

I™ This is a minor edit

Save | Save and edit | Preview | Cancel Multimedia

Applet
Frames

Audio
Wave
mp3
Midi
- aalAudia Page last modified on May 05, 2008, af 01:42 PM

O |- Done

Edit | History | Source | AttachFile | Backinks | List Group | Attributes | Group Attributes
Page last modified on May 05, 2008, at 01:42 PM Edit | History | Source | Attacn File | Backiinks | List Group | Attributes | Group Attributes
skin config ** pmwiki-2. 1.27 +% |

o |-

Done

Figure 4. Edit and browse view of a wiki page caritey an EPS graphic.

5. THE CROSS MEDIA PUBLISHING MODULE

The cross media publishing module of media2mulvisies a function to convert single wiki pages or an
arbitrary number of page sequences to PDF, PoptRerRTF. Before such a feature can be implemewted
have to answer the question how to define an oodewiki pages. In contrast to printed documentski wi
fields are comparable to loose-leaf collectiongwitany independent pages devoid of a unique order.

5.1 Wiki trails

However, if we want to transfer the contents ofiki ield to a print-oriented format, we must inalbly
define a linear order on the pages. Furthermorgructured document needs information about hibsarc
levels so that chapters, sections and subsectiamde represented. In PmWiki, the definition oftsac
structured order is realized by so-calteals, a list of links to wiki pages. By using nestestdi with items
and sub-items a section structure similar to aetalblcontents can be built. A trail in PmWiki syxfzas the
following form and leads to the result shown onrilgét:

* [[Introduction]] 1. Introduction

* [[Sort algorithms]] 2. Sort algorithms

** [[Bubblesort]] 2.1 Bubblesort

** [[Quicksort]] 2.2 Quicksort

* [[Search algorithms]] 3. Search algorithms

When media2mult finds a trail on a wiki page, gplays a button labeleRublish Trail that can be clicked to
start the conversion process. On all other pagashilitton is missing and only a function to convibe
current page is offered (see figure 4 on the right)

5.2 XML-based conversion

A click on buttonPublish Trail triggers the actiom2m-publish that firstly collects all page contents in the
order they appear in the wiki trail. Afterwardsetivhole collected code is passed to the alreadytiomeu
function MarkupToHTML and converted to WikiXML, a slightly extended XHTMvariant. For this
purpose, special markup rules are applied. Besidegerting the media files these rules also prodtidé

elements describing the document structure andy¢imerated media files, so that the following cosizer
process receives all necessary information.

The decision for XHTML as a base for all furthemgersion steps has the advantage that all markup
rules already defined by PmWiki or additional ping-can normally be used without adaption. Esplygial
there is no need for doubling the elementary reks & order to get both wiki pages in HTML and XML
files for PDF creation. That actually would complie not only the progression of media2mult but éfeo
update procedure for the whole PmWiki system. TR ML attempt reduces the required adaption effort t
writing markup rules for all new wiki statementisdiembed or code.

We already mentioned above that the first versibmedia2mult relied on DocBook. Even when we
moved to another approach for the stated reasmisg XML technology proved to be very reliable.
Particularly, the complex but powerful XSL-FO stardl enables a fully automated creation of high-ityal
documents. An important advantage over LaTeX — kincusually chosen in order to create professional
scientific documents — is the better network sup@®o it's possible to reference images locatedifi@rent
servers without the need of explicit downloads.

Furthermore, LaTeX's relatively inflexible tablending is a big problem. It is nearly impossible to
translate a given HTML table to LaTeX without armhg its actual content because LaTeX expects atesol
width parameters for each column in order to briealg lines properly. None of the currently avaikabl
extension packages is able to completely solveghiblem. Overall, the edit-compile-revise paradigfin
TeX doesn't fit too well in an automated one-passuthent creation process. In contrast XSL-FO has be
designed for this scenario and works more relialtn if there's room for further improvements.

The XSL-FO files needed for PDF, PostScript and Rfdgation are derived from the WikiXML files by
applying a parameterized XSLT stylesheet. Sincemnate templates for nearly all XHTML elements the
majority of all layout information included in thiki pages is transferred to the XSL-FO file. Thugrue for
simple text formatting as well as more complex laydata like text flow around images and table cell
formattings. Big images that would cross at least page margin are automatically downscaled tintiit
the print area.

5.3 Output formats

Most of the currently available FO processors foately support various output formats, i.e. from a
programmer's view, the main task is done by crgative FO file. Then the FO processor finishes the
remaining work. Because of the complex XSL-FO stadd lot of time has been invested in writing ifhde
stylesheets for this intermediate format. Howetlggre are planned further stylesheets for statiMH®&nd
LaTeX (see also fig. 5). The latter can be usedadsase for further manual additions and/or layout

optimizations.
wiki code |—» WikiXML
options
PDF
HTML XSL-FO LaTeX <:
PS

PDF || PS || RTF

Figure 5. Conversion steps from the initial wikusce
code to various target formats.

5.4 Stylesheet options

To increase the flexibility of the stylesheets amdjive the user the opportunity to change somedpfimed
layout settings, the stylesheet templates can theeirced by several parameters. They include option
adapt page size, margins, font style and sizesgdss information about the handling of web links

The stylesheet parameters can be altered througébaform. All settings are transformed to variable
definitions and stored in a local XSLT file. Thitefalso serves as a wrapper for the actual ssaflesheet.
The combination of WikiXML file and local styleshteleads to an XSL-FO file indirectly adapted by the
user (see fig. 6).

wiki code
stylesheet for
target format
XSL-FO —
7y PmWiki +
media2mult
£
2l
E

style_sheet local WikiXML
options stylesheet
XSLT processor

v
XSL-FO
v
<XsLFO
options
Y
PDF

Figure 6. Schematic view of the cross media pubblgsiomponent.

6. CONCLUSION

A PmWiki system extended by media2mult providesdpoers of e-learning content with a server-based
authoring tool that enables them to collaborativetyte multi medially enriched documents with minor
effort. The documents are immediately availablet@web and can be directly converted to printrigd
formats like PDF or RTF. For this purpose it offéransparent mechanisms for media file conversions.
Among other things, they make it possible to embatively unsupported files, like EPS, into wiki gag
without the need of manual conversions. In conjonctvith video files media2mult also extracts peavi
images for PDF documents.

The cross media publishing component converts semseof wiki pages to PDF or RTF files using an
XML-based conversion procedure. While able to iafice the conversion process by stylesheet paramneter
the user doesn't come in touch with the XML, XSLAd&O files. The user input is confined to the wiki
input language and the layout parameter web form.

At our university, media2mult is successfully useanany seminars of different subjects -- espegiall
non-technical fields as well. There are currentlyero200 independent wiki fields on our farm server.
Lecturers and students are able to productively theetool after a short time of practice. The fiefl
application ranges from student term papers to &hobks including lecture materials.

A short media2mult document with the most importaymtax and media examples can be found at
http://www.media2mult.de.

