To be published in: Notes on Numerical Fluid Mechanics, Vieweg 1994

Flow simulation
with FEM
on massively parallel systems

Frank Lohmeyer, Oliver Vornberger

Department of Mathematics and Computer Science
University of Osnabriick, D-49069 Osnabriick

E-Mail:lohmey@informatik.uni-osnabrueck.de

Jan 1994

Summary

An explicit finite element scheme based on a two step Taylor-Galerkin algorithm allows the
solution of the Euler and Navier-Stokes Equations for a wide variety of flow problems. To
obtain useful results for realistic problems one has to use grids with an extremely high den-
sity to get a good resolution of the interesting parts of a given flow. Since these details are
often limited to small regions of the calculation domain, it is efficient to use unstructured
grids to reduce the number of elements and grid points. As such calculations are very time
consuming and inherently parallel the use of multiprocessor systems for this task seems to
be a very natural idea. A common approach for parallelization is the division of a given
grid, where the problem is the increasing complexity of this task for growing processor
numbers. Here we present some general ideas for this kind of parallelization and details of
a Parix implementation for Transputer networks. Results for up to 1024 processors show
the general suitability of our approach for massively parallel systems.

Introduction

The introduction of the computer into engineering techniques has resulted in the growth
of a completely new field termed computational fluid dynamics. This field has led to the
development of new mathematical methods for solving the equations of fluid mechanics.
These improved methods have permitted advanced simulations of flow phenomena on the
computer for a wide variety of applications. This leads to a demand for computers which
can manage these extremely time consuming calculations within acceptable runtimes.
Many of the numerical methods used in computational fluid dynamics are inherently
parallel, so that the appearance of parallel computers makes them a promising candidate
for this task.

One problem arising when implementing parallel algorithms is the lack of standards both
on the hardware and software side. As things like processor topology, parallel operating

system, programming languages, etc. have a much greater influence on parallel than on
sequential algorithms, one has to choose an environment where it is possible to get results
which can be generalized to a larger set of other environments. We think that future
supercomputers will be massively parallel systems of the MIMD class with distributed
memory and strong communication capabilities. On the software side we see two possible
models: message passing or virtual shared memory — both of them integrated into standard
programming languages.

In the CFD field there is another important point: the numerical methods for the solution
of the given equations. As we are mainly computer scientists, we decided not to invent new
mathematical concepts but to develop an efficient parallel version of an algorithm which
was devoloped by experienced engineers for sequential computers and which is suitable for
the solution of problems in the field of turbomachinery [1]. The hardware platforms which
are availiable for us, are Transputer systems of different sizes, which fulfill the demands
mentioned above (the only problem in the meantime is the weak performance of a single
processor node). We think the model for parallelism should be message passing (at least
until now). When we started we had to use an OCCAM environment [2], which of course
was neither comfortable nor portable, later we changed to Helios [3], which definitely is
not suitable for massively parallel algorithms with high communication demands. Here
we will present an implementation using Parix. This programming model seems to be
very close to a message passing standard which have to be set up in the near future.
The following two sections give a brief overview about the physical and mathematical
foundations of the used numerical method, and an outline of the general parallelization
strategy. The next section describes in detail some grid division algorithms which are
a very important part for this kind of parallel algorithms, because they determine the
load balancing between processors. Another section compares some speedup results for
different parameter settings, while the last section closes with a conclusion and suggestions
for further research.

Foundations

This section gives a brief description of the equations which are necessary for the parallel
flow calculations. For a detailed description see [4], [5] and [6].

For our flow calculations on unstructured grids with the finite element method we use
Navier-Stokes Equations for viscous flow and Euler Equations for inviscid flow. The
Navier-Stokes (Euler) Equations can be written in the following form,

ou or oG
W—l-a—x—l-a—y—(), (1)

where U, I’ and (i are 4-dimensional vectors. U describes mass, impulses and energy, F'
and G are flow vectors. The flow vectors are different for the Euler and Navier-Stokes
equations, in the latter case we have to add two equations to close the system.

The solution of these differential equations is calculated with an explicit Taylor-Galerkin
two step algorithm. Therefore, at first a Taylor series in time is developed, which looks

like

ou™ A 9*U™

U = AL
TRl T

+ O(AF?), (2)

and in other form

0 At oU™
U= AU = At— [U" + — AL?).
U U U 5 (U 5)—I—O() (3)
The expression in parenthesis can be seen as
At oU™

nt+1/2 —_ I/ = 4
U U+ 5 7 (4)

If we take no consideration of the O(A#?)-term from equation (3) we achieve
AU = a2y, (5)

ot

With equation (1) and a replacement of the time derivation of equation (4) and (5) the
two steps of the Taylor-Galerkin algorithm are:

At (8F” aG“) (6)

Un—|—1/2 —yr - ==
2\ Ox + dy

and

AU = —

aFn—I—l/Q aGn—I—l/Q
At(Tt) (1)

The differential equations can be expressed in a weighted residual formulation using tri-
angular finite elements with linear shape functions [7]. Therefore, in the first step the
balance areas of the convective flows for one element have to be calculated on the nodes
of each element. In the second step the balance area for one node is calculated with the
help of all elements which are defined with this node. A pictorial description of these
balance areas of the two steps is given in figure 1.

Predictor-Step (6): Corrector-Step (7):

Nodes ——= Element E Elements ——= NodeN

Figure 1: Balance areas

The calculation with the finite element method, which divides the calculation area into
triangles, leads to the characteristic summation of the element matrices into the global
mass matrix M and to the following equation system

M AU = At Rg(U™), (8)

where Rg is the abbreviation for the summation of the right hand sides of equations (7)
for all elements. The inversion of the Matrix M is very time consuming and therefore we
use, with the help of the so called lumped mass matrix My, the following iteration steps:

At Rs
AU =
At Rg — MAUY
AUV = AU 4 — 5 : (10)
My,

For the determination of AU three iteration steps are sufficient. If we consider stationary
flow problems only the initial iteration has to be calculated.

The time step At must be adjusted in a way where the flow of information does not
exceed the boundaries of the neighbouring elements of a node. This leads to small time
steps if instationary problems are solved (in the case of stationary problems we use a
local time step for each element). In both cases the solution of a problem requires the
calculation of many time steps, so that the steps (6), (7), (9) and (10) are carried out
many times for a given problem. The resulting structure for the algorithm is a loop over
the number of time steps, where the body of this loop consists of one or more major loops
over all elements and some minor loops over nodes and boundaries (major and minor in
this context reflects the different runtimes spent in the different calculations).

El. 1,4 ——= Proc. 1

El.2,3,5,6 —= Proc. 2

Figure 2: Grid division

Another important characteristic of this method is the use of unstructured grids. Such
grids are characterized by various densities of the finite elements for different parts of the
calculation area. The elements of an unstructured grid differ in both size and number
and orientation of adjacent elements, which can result in a very complex grid topology.
This fact is one main reason for the difficulties arising in constructing an efficient parallel
algorithm.

Parallelization

If we are looking for parallelism in this algorithm we observe, that the results of one time
step are the input for the next time step, so the outer loop has to be calculated in sequential

order. This is not the case for the inner loops over elements, nodes and boundaries which
can be carried out simultaniously. So the basic idea for a parallel version of this algorithm
is a distributed calculation of the inner loops. This can be achieved by a so called grid
division, where the finite element grid is partitioned into sub grids. Every processor in the
parallel system is then responsible for the calculations on one of these sub grids. Figure 2
shows the implication of this strategy on the balance areas of the calculation steps.

The distribution of the elements is non overlapping, whereas the nodes on the border
between the two partitions are doubled. This means that the parallel algorithm carries
out the same number of element based calculations as in the sequential case, but some
node based calculations are carried out twice (or even more times, if we think of more
complex divisions for a larger number of processors). Since the major loops are element
based, these strategy should lead to parallel calculations with nearly linear speedup.
One remaining problem is the construction of a global solution out of the local sub grid
solutions. In the predictor step the flow of control is from the nodes to the elements, which
can be carried out independently. But in the corrector step we have to deal with balancing
areas which are based on nodes which have perhaps multiple incarnations. Each of these
incarnations of a node sums up the results from the elements of its sub grid, whereas the
correct value is the sum over all adjacent elements. As figure 3 shows the solution is an
additional communication step where all processors exchange the values of common nodes
and correct their local results with these values.

N1 N1 N1 N1
N2 N2
N4 N3 N4
' " '
Predictor-Step (6): Corrector-Step (7):
local nodes ——= local elements local lements ——= local nodes

externa nodes ——= local nodes

Figure 3: Parallel calculations

This approach where the sequential algorithm is used on distributed parts of the data sets
and where the parallel and the sequential version are arithmetically equivalent is usally
described with the key word data decomposition. The structure of this algorithms implies
a MIMD architecture and the locality of data is exploited best with a distributed memory
system. This special algorithm has a very high communication demand, because in every
time step for every element loop an additional communication step occurs. To obtain
high efficiencies a parallel system with high communication performance is required and
the programming model should be message passing. Our current implementation is for
Transputer systems and uses the Parix programming environment, which supplies a very
flexible and comfortable interprocessor communication library. This is necessary if we

think of unstructured grids which have to be distributed over large processor networks
leading to very complex communication structures.

Grid division

If we now look at the implementation of the parallel algorithm, two modules have to be
constructed. One is the algorithm running on every processor of the parallel system. This
algorithm consists of the sequential algorithm operating on a local data set and additional
routines for the interprocessor communication. These routines depend on the general
logical processor topology, so that the appropriate choice of this parameter is important
for the whole parallel algorithm. In Parix this logical topology has to be mapped onto the
physical topology which is realized as a two-dimensional grid (this statement only holds for
T8-systems, in the future this topology will change to a three-dimensional grid). For two-
dimensional problems there are two possible logical topologies: one-dimensional pipeline
and two-dimensional grid. They can be mapped in a canonical way onto the physical
topology, so that we have implemented versions of our algorithm for both alternatives.

R— B — v

global grid

\

distribution of ‘
local sub grids @7

'y

Figure 4: Decomposition algorithm

The second module we had to implement is a decomposition algorithm which reads in
the global data structures and calculates a division of the grid and distributes the corre-
sponding local data sets to the appropriate processor of the parallel system. The whole
algorithmic structure is shown in figure 4, where we can also see that a given division often
requires interprocessor connections which are not supplied by the basic logical topology.
These connections are built dynamically with the so called virtual links of Parix and
collected in a virtual topology.

The essential part of the whole program is then the division algorithm which determinates
the quality of the resulting distribution. This algorithm has to take different facts into
consideration to achieve efficient parallel calculations. First it must ensure that all proces-
sors have nearly equal calculation times, because idle processors slow down the speedup.
To achieve this it is necessary first to distribute the elements as evenly as possible and

then minimize the overhead caused by double calculated nodes and the resulting com-
munications. A second point is the time consumed by the division algorithm itself. This
time must be considerably less than that of the actual flow calculation. Therefore we can-
not use an optimal division algorithm, because the problem is NP-complete and such an
algorithm would take more time than the whole flow calculation. For this reason we have
to develop a good heuristic for the determination of a grid division. This task is mostly
sequential and as the program has to deal with the whole global data sets we decided to
map this process onto a workstation outside the Transputer system. Since nowadays such
a workstation is much faster than a single Transputer, this is no patchedup solution, but
the performance of the whole calculation even increases.

According to the two versions for the parallel module, we also have implemented two
versions for the division algorithm. Since the version for a one-dimensional pipeline is a
building block for the two-dimensional case, we present this algorithm first:

Phase 0: calculate element weights
calculate virtual coordinates

Phase 1: find element ordering with small bandwidth
a) use virtual coordinates for initial ordering
b) optimize bandwidth of ordering

Phase 2: find good element division using ordering and weights

Phase 3: optimize element division using communication analysis

The division process is done in several phases here: an initialization phase (0) calculates
additional information for each element. The weight of an element represents the calcula-
tion for this special element type (these times are varying because of special requirements
of e.g. border elements). The virtual coordinates reflect the position where in the pro-
cessor topology this element should roughly be placed (therefore the dimension of this
virtual space equals the dimension of the logical topology). These virtual coordinates
(here it is actually only one coordinate) can be derived from the real coordinates of the
geometry or from special relations between groups of elements. An example for the latter
case are elements belonging together because of the use of a turbulence model (we are
using the Baldwin & Lomax model here). In this case nodes on a line in normal direction
to a surface are strongly coupled by the type of calculations used in this model and so
elements can be given virtual coordinates which reflect these relations.

Before the actual division an ordering of the elements with a small bandwidth is calculated
(phase 1). This bandwidth is defined as the maximum distance (that is the difference of
indices in the ordering) of two adjacent elements. A small bandwidth is a requirement for
the following division step. Finding such an ordering is again a NP-complete problem, so
we can not get an optimal solution. We use a heuristic, which calculates the ordering in
two steps. First we need a simple method to get an initial ordering (a). In our case we use
a sorting of elements according to their virtual coordinates. In the second step (b) this
ordering is optimized e.g. by exchanging pairs of elements if this improves the bandwidth
until there is no more exchanging possible.

With the received ordering and the element weights the actual division is now calculated.
First the elements are divided into ordered parts with equal weights (phase 2). Then this
division is analysed in terms of resulting borders and communications and is optimized
by reducing border length and number of communication steps by exchanging elements
with equal weights between two partitions (phase 3).

If we now want to construct a division algorithm for the two-dimensional grid topology
we can use the algorithm described above as a building block. The resulting algorithm
has the following structure:

Phase 0 (initialization) similar to 1D-algorithm
for #processors in X-dimension do

calculate meta-division M
using phases 1 and 2 of 1D-algorithm

divide meta-division M in y-dimension
using phases 1 and 2 of 1D-algorithm

Phase 3 (optimization) similar to 1D-algorithm

The only difference between the one and the two-dimensional version of the initialization
phase is the number of virtual coordinates which here of course is two. Phase 3 has the
same task which is much more complex in the two-dimensional case. The middle phase
here is a two stage use of the one-dimensional strategy, where the grid is first cut in
the X-dimension and then all pieces are cut in the Y-dimension. This strategy can be
substituted by a sort of recursive bisectioning, where in every step the grid is cut into two
pieces in the larger dimension and both pieces are cut further using the same strategy.

Results

The algorithms described in the previous chapter were tested with a lot of different grids
for various flow problems. As a kind of benchmark problem we use the instationary
calculation of inviscid flow behind a cylinder, resulting in a vortex street. One grid for
this problem was used for all our implementations of the parallel calculations. This grid
has a size of about 12000 grid points which are forming nearly 20000 elements.

In figure 5 the speedups for some parameter settings are shown. The system where
these measurements were made is a 1024 processor system located at the University of
Paderborn. It consists of T805 Transputers, each of them equipped with 4 MByte local
memory and coupled together as a two-dimensional grid. Our algorithms are all coded in
Ansi-C using the Parix communication library.

In the speedup curves the difference between the logical topologies 1D-pipeline and 2D-
grid is shown. In the left part of the picture we can see that for up to 256 processors we
achieve nearly linear speedup with the grid topology, whereas the pipe topology is only
linear for a maximum of 128 processors.

If we increase the number of processors like in the right half we observe that the grid
topology again is superior to the pipe topology, but the increase of speedup is no longer
linear. It is a common problem for most parallel algorithms, that for a fixed problem
size there is always a number of processors where the speedup is no longer increasing
proportionally to the number of processors. But here the gap between the actual and the
theoretically possible speedup for 1024 processors seems to be too large.

Sp Sp
256 T 1024+
Pipe: © T | Pipe: ¢
Grid: o 1| Grid: o
o 170
128 512 1
° o 93
N S 261 o ° 287
128 1 o o © 133
64 128 256 n 128256 512 1024 n

Figure 5: Speedups for different topologies

We had measured speedups for this grid in the older Helios version where we achieved a
speedup of 86 (using 256 processors) for the pipe topology (the grid topology was first
implemented under Parix). For a larger number of processors the Helios system was not
availiable, even for 256 processors it was not able to execute the program every time.
The Parix results can be slightly increased for the grid topology if we use the recursive
bisection method for the grid division: on 1024 processors the speedup is then 307.

Conclusion

In this paper we have introduced a parallelization for the calculation of fluid flow problems
on unstructured grids. An existing sequential algorithm has been adjusted for Transputer
systems under Parix and investigations on the parallelization of this problem have been
made. For two logical processor topologies we have developed different grid division algo-
rithms and compared them for some benchmark problems. The grid topology has shown
its superiority over the pipe topology. This was expected since a two-dimensional topology
must be better suited for two-dimensional grids than a one-dimesional topology which is
not scalable for large processor numbers. The speedup measurements on a 1024 Trans-
puter cluster showed the general usefulness of the choosen approach for massively parallel
systems, but also the limits of the current implementation for large processor numbers
can be seen.

We think that one general problem is the use of an a-priori division algorithm with an
a-priori optimization. Such an algorithm must estimate all parameters of a distributed

calculation before the program starts. Since all these estimations are inaccurate even an
optimal solution of the divsion problem will not lead to an optimal parallel execution. A
solution which is able to deal with this fuzzy cost functions is a dynamic optimization of a
given a-priori division. Such an optimization can detect load imbalances of processors at
runtime and a dynamic load balancer can correct these errors by a dynamic redistribution
of elements.

Our further research will concentrate on an improvement of the parallelization of the used
flow algorithm. The dynamic load balancer described above will be implemented in the
near future. The use of this concept has a lot of other advantages: As the a-priori division
is only used as a starting point for the further balancing, a very simple algorithm can be
used for this task which is faster than the actual algorithm. Dynamic load balancing is
fully parallel and hardware independent, so that changes of the basic hardware nodes can
be done without changing the developed algorithm. A very important last point is the
parallelization of adaptive mesh refinement, where a dynamic load balancer can be used
as an important building block.

References

[1] Armin Vornberger. Stromungsberechnung auf unstrukturierten Netzen mit der

Methode der finiten Elemente. Ph.D. Thesis, RWTH Aachen, 1989
[2] F. Lohmeyer, O. Vornberger, K. Zeppenfeld, A. Vornberger. Parallel Flow Calcula-

tions on Transputers. International Journal of Numerical Methods for Heat & Fluid

Flow, Vol. 1, pp. 159-169, 1991
[3] F. Lohmeyer, O. Vornberger. CFD with parallel FEM on Transputer Networks.

Flow Simulation with High-Performance Computers I, Notes on Numerical Fluid

Mechanics, Vol. 38, pp. 124-137, Braunschweig 1993

[4] W. Koschel, M. Lotzerich, A. Vornberger. Solution on Unstructured Grids for the
Fuler- and Navier-Stokes Equations. AGARD Symposium Validation of Computa-
tional Fluid Dynamics, Lisbon, May 1988

[5] W. Koschel, A. Vornberger. Turbomachinery Flow Calculation on Unstructured
Grids Using the Finite Element Method. Finite Approximations in Fluid Mechan-
ics I, Notes on Numerical Fluid Mechanics, Vol. 25, pp. 236-248, Aachen, 1989

[6] W. Koschel, A. Vornberger, W. Rick. Engine Component Flow Analysis Using a
Finite Element Method on Unstructured Grids. Institute for Jet Propulsion and
Turbomachinery, Technical University of Aachen

[7] R. Peyret, T.D. Taylor. Computation Methods for Fluid Flow. Springer Series in
Computational Physics, Berlin, 1983

10

