
CFD with adaptive FEM

on massively parallel systems

Frank Lohmeyer� Oliver Vornberger

Department of Mathematics and Computer Science

University of Osnabr�uck� D������ Osnabr�uck� Germany

Summary

An explicit �nite element scheme based on a two�step Taylor�Galerkin algorithm allows
the solution of the Euler and Navier�Stokes equations for a wide variety of �ow problems�
To obtain useful results for realistic problems� one has to use grids with an extremely high
density to obtain a good resolution of the interesting parts of a given �ow� Since these
details are often limited to small regions of the calculation domain� it is e�cient to use
unstructured grids to reduce the number of elements and grid points� As such calculations
are very time consuming and inherently parallel� the use of multiprocessor systems for
this task seems to be a very natural idea� A common approach for parallelization is the
division of a given grid� where the problem is the increasing complexity of this task for
growing processor numbers� Some general ideas for this kind of parallelization and details
of a Parix implementation for Transputer networks are presented� To improve the quality
of the calculated solutions� an adaptive grid re�nement procedure was included� This
extension leads to the need for a dynamic load balancing for the parallel version� An
e�ective strategy for this task is presented and results for up to ��	
 processors show the
general suitability of this approach for massively parallel systems�

Introduction

The introduction of the computer into engineering techniques has resulted in the growth
of a completely new �eld� termed computational �uid dynamics �cfd�� This �eld has
led to the development of new mathematical methods for solving the equations of �uid
mechanics� These improved methods have permitted advanced simulations of �ow phe�
nomena on the computer for a wide variety of applications� This leads to a demand for
computers which can manage these extremely time�consuming calculations within accept�
able run times� Many of the numerical methods used in computational �uid dynamics are
inherently parallel� so that the appearance of parallel computers makes them a promising
candidate for this task�
One problem arising when implementing parallel algorithms is the lack of standards on
both the hardware and software sides� As aspects such as processor topology� parallel
operating system and programming languages have a much greater in�uence on parallel
than on sequential algorithms� one has to choose an environment where it is possible

to obtain results which can be generalized to a larger set of other environments� We
think that future supercomputers will be massively parallel systems of the mimd class
with distributed memory and strong communication capabilities� On the software side�
it seems that some standards can be established in the near future� As our algorithm
is designed for message�passing environments� the appropriate standard is mpi �Message
Passing Interface��
In the cfd �eld� there is another important point
 the numerical methods for the solution
of the given equations� As we are mainly computer scientists� we decided not to invent
new mathematical concepts but to develop an e�cient parallel version of an algorithm
which was developed by experienced engineers for sequential computers and which is
suitable for the solution of problems in the �eld of turbomachinery ���� The hardware
platforms which are availiable to us are Transputer systems of di�erent sizes� which ful�l
the demands mentioned above� At the time the algorithm was developed� there was no
mpi environment availiable for our transputer systems� so here we will present a version
using Parix �Parallel extensions to Unix� a parallel runtime system for Parsytec machines�
that needs only a small number of parallel routines� which are common in most message�
passing environments� Most of these routines are hidden inside a few communication
procedures� so that they can be replaced easily� when changing the parallel environment�
The following two sections give a very short overview of the physical and mathematical
foundations of the used numerical methods �for a detailed description� see ���	�� and a
brief outline of the general parallelization strategy �see also ���
����� A similar approach�
especially for the numerical methods� can be found in ���� The next section describes
in detail some grid division algorithms which are a very important part for this kind of
parallel algorithms� because they determine the load balancing between processors� The
special subjects of adaptive re�nements and dynamic load balancing are discussed in a
separate section� Then some results are presented� and the last section closes with a
conclusion and suggestions for further research�

Foundations

For our �ow calculations on unstructured grids with the �nite element method� we use
Navier�Stokes equations for viscous �ow and Euler equations for inviscid �ow� The Navier�
Stokes �Euler� equations can be written in the following form

�U

�t
�
�F

�x
�
�G

�y
� �� ���

where U � F and G are four�dimensional vectors� U describes mass� impulses and energy�
F and G are �ow vectors� The vectors for the Navier�Stokes equations are

U �

�
BBB�

�

�u

�v

�e

�
CCCA � �	�

F �

�
BBB�

�u

�u� � �x
�uv � �xy

��e� �x�u� �yxv � k �T
�x

�
CCCA � ���

	

G �

�
BBBB�

�v

�uv � �xy
�v� � �y

��e� �y�v � �xyu� k �T
�y

�
CCCCA � �
�

for the Euler equations the �� � and k terms can be neglected� in both cases we have to
add two equations to close the system�
The solution of these di�erential equations is calculated with an explicit Taylor�Galerkin
two�step algorithm� In the �rst step �the so�called predictor step�� an intermediate result

Un���� � Un
�

�t

	

�
�F n

�x
�
�Gn

�y

�
���

is calculated and in the second step �the corrector step� this result is used to calculate

�U � ��t

�
�F n����

�x
�
�Gn����

�y

�
� ���

The di�erential equations can be expressed in a weighted residual formulation using trian�
gular �nite elements with linear shape functions� Therefore� in the �rst step the balance
areas of the convective �ows for one element have to be calculated on the nodes of each
element� In the second step the balance area for one node is calculated with the help of
all elements which are de�ned with this node� A pictorial description of these balance
areas of the two steps is given in Figure ��

Nodes Element E

Predictor-Step (6):

E

N

Elements Node N

Corrector-Step (7):

Figure �� Balance areas�

The calculation with the �nite element method� which divides the calculation area into
triangles� leads to the characteristic summation of the element matrices into the global
mass matrix M and to the following equation system

M �U � �tRS�U
n�� ���

where RS is the abbreviation for the summation of the right�hand sides of Eqn� ��� for all
elements� The inversion of the matrix M is very time consuming and therefore we use�
with the help of the so�called lumped mass matrix ML� the following iteration steps

�

�U� �
�tRS

ML
� ���

�U��� � �U� �
�tRS �M�U�

ML
� ���

For the determination of �U three iteration steps are su�cient� If we consider stationary
�ow problems� only the initial iteration has to be calculated�
The time step �t must be adjusted in a way such that the �ow of information does not
exceed the boundaries of the neighbouring elements of a node� This leads to small time
steps if non�stationary problems are to be solved �in the case of stationary problems we
use a local time step for each element�� In both cases the solution of a problem requires
the calculation of many time steps� so that the steps ���� ���� ��� and ��� are carried out
many times for a given problem� The resulting structure for the algorithm is a loop over
the number of time steps� where the body of this loop consists of one or more major loops
over all elements and some minor loops over nodes and boundaries �major and minor in
this context re�ects the di�erent run times spent in the di�erent calculations��
Another important characteristic of this method is the use of unstructured grids� Such
grids are characterized by various densities of the �nite elements for di�erent parts of the
calculation area� The elements of an unstructured grid di�er in both size and number
of adjacent elements� which can result in a very complex grid topology� This fact is one
main reason for the di�culties arising in constructing an e�cient parallel algorithm�
The main advantage of unstructured grids is their ability to adapt a given �ow� To obtain
a high resolution of the details of a �ow� the density of the grids must only be increased
in the interesting parts of the domain� This leads to a very e�cient use of a given number
of elements� One problem arising in this context is the fact that in most cases the details
of a �ow are the subject of investigations� so that it is impossible to predict the exact
regions� where the density of the grid has to be increased� A solution of this problem is
a so�called adaptive grid re�nement� where the calculations start with a grid with no or
few re�nements� As the calculations proceed� it is now possible to detect regions where
the density of the grid is not su�cient� These parts of the grid will then be re�ned and
the calculations proceed with the re�ned grid� This re�nement step is repeated until the
quality of the solution is su�cient�

Parallelization

If we are looking for parallelism in this algorithm� we observe that the results of one
time step are the input for the next time step� so the outer loop has to be calculated
in sequential order� This is not the case for the inner loops over elements� nodes and
boundaries which can be carried out simultaneously� Hence the basic idea for a parallel
version of this algorithm is a distributed calculation of the inner loops� This can be
achieved by a so�called grid division� where the �nite element grid is partitioned into
sub�grids� Every processor in the parallel system is then responsible for the calculations
on one of these sub�grids� Figure 	 shows the implication of this strategy for the balance
areas of the calculation steps�
The distribution of the elements is non�overlapping� whereas the nodes on the border
between the two partitions are doubled� This means that the parallel algorithm carries
out the same number of element�based calculations as in the sequential case� but some

node�based calculations are carried out twice �or even more times� if we think of more
complex divisions for a larger number of processors�� Since the major loops are element
based� this strategy should lead to parallel calculations with a nearly linear speed�up�
One remaining problem is the construction of a global solution out of the local sub�grid
solutions� In the predictor step the �ow of control is from the nodes to the elements� which
can be carried out independently� But in the corrector step we have to deal with balancing
areas which are based on nodes which have perhaps multiple incarnations� Each of these
incarnations of a node sums up the results from the elements of its sub�grid� whereas the
correct value is the sum over all adjacent elements� As Figure � shows� the solution is
an additional communication step where all processors exchange the values of common
nodes and correct their local results with these values�

El. 1, 4 Proc. 1

El. 2, 3, 5, 6 Proc. 2

A

B

C

1

2

3

4

5
6

2

3

5
6

A

B

C

1

4

A

B

C

Figure �� Grid division�

This approach� where the sequential algorithm is used on distributed parts of the data sets
and where the parallel and the sequential version are arithmetically equivalent� is usually
described with the keyword data decomposition� Other domain decomposition approaches
have to deal with numerically di�erent calculations in di�erent parallel cases� and have
to pay special attention to numerical stability� In the case of implicit algorithms� it is
common to make a division of the grid nodes� due to the structure of the resulting system
of linear equations� which have to be solved in parallel� The main advantage of the explicit
algorithm used here is the totally local communication structure� which results in a higher
parallel e�ciency� especially for large numbers of processors�

N1
N2

N3

E

N1

N4

E2

N3

local nodes local elements

Predictor-Step (6):

N1
N2

N3

E

N1

N4

N3

E2

local elements local nodes

external nodes local nodes

Corrector-Step (7):

Figure �� Parallel calculations�

�

This structure implies an mimd architecture and the locality of data is exploited best with
a distributed memory system together with a message�passing environment� This special
algorithm has a very high communication demand� because in every time step for every
element loop an additional communication step occurs� An alternative approach in this
context is an overlapping distribution� where the subgrids have common elements around
the borders� This decreases the number of necessary communications but leads to redun�
dant numerical calculations� We decided to use non�overlapping divisions for two reasons

�rst they are more e�cient for large numbers of subgrids �and are therefore better suited
for massively parallel systems�� and second we want to use adaptive grids� The required
dynamic load balancing would be a much more di�cult task for overlapping subgrids�
The only drawback of our approach is that to obtain high e�ciencies a parallel system
with high communication performance is required� so it will not work� e�g�� on worksta�
tion clusters� Our current implementation is for Transputer systems and uses the Parix
programming environment� which supplies a very �exible and comfortable interprocessor
communication library� This is necessary if we think of unstructured grids which have
to be distributed over large processor networks leading to very complex communication
structures�

Grid division

If we now consider the implementation of the parallel algorithm� two modules have to
be constructed� One is the algorithm running on every processor of the parallel system�
This algorithm consists of the sequential algorithm operating on a local data set and
additional routines for the interprocessor communication� These routines depend on the
general logical processor topology� so that the appropriate choice of this parameter is
important for the whole parallel algorithm� In Parix this logical topology has to be
mapped onto the physical topology which is realized as a two�dimensional grid� For two�
dimensional problems there are two possible logical topologies
 one�dimensional pipeline
and two�dimensional grid� They can be mapped in a canonical way onto the physical
topology� so that we have implemented versions of our algorithm for both alternatives�
The second module we had to implement is a decomposition algorithm which reads in
the global data structures and calculates a division of the grid and distributes the cor�
responding local data sets to the appropriate processor of the parallel system� Such a
division can require interprocessor connections� which are not supplied by the basic logi�
cal topology� These connections are built dynamically with the so�called virtual links of
Parix and collected in a virtual topology�
The essential part of the whole program is the division algorithm which determinates
the quality of the resulting distribution� This algorithm has to take di�erent facts into
consideration to achieve e�cient parallel calculations� First it must ensure that all pro�
cessors have nearly equal calculation times� because idle processors reduce the speed�up�
To achieve this� it is necessary �rst to distribute the elements as evenly as possible and
then minimize the overhead caused by double calculated nodes and the resulting commu�
nications� A second point is the time consumed by the division algorithm itself� This time
must be considerably less than that of the actual �ow calculation� Therefore� we cannot
use an optimal division algorithm� because the problem is np�complete and such an al�
gorithm would take more time than the whole �ow calculation� For this reason� we had
to develop a good heuristic for the determination of a grid division� This task is mostly
sequential and� as the program has to deal with the whole global data sets� we decided to

�

map this process onto a workstation outside the Transputer system� Since nowadays such
a workstation is much faster than a single Transputer� this is no patched�up solution� and
the performance of the whole calculation even increases�
According to the two versions for the parallel module� we also implemented two versions for
the division algorithm� Since the version for a one�dimensional pipeline is a building block
for the two�dimensional case� we present this algorithm �rst �see Figure
�� The division
process is done in several phases here
 an initialization phase ��� calculates additional
information for each element� The weight of an element represents the calculation time
for this special element type �these times are varying because of special requirements of�
e�g�� border elements�� The virtual coordinates re�ect the position where in the processor
topology this element should roughly be placed �therefore the dimension of this virtual

space equals the dimension of the logical topology�� These virtual coordinates �here it is
actually only one coordinate� can be derived from the real coordinates of the geometry
or from special relations between groups of elements� An example of the latter case is
elements belonging together because of the use of periodic borders� In this case nodes
on opposite sides of the calculation domain are strongly coupled� and this fact should be
re�ected in the given virtual coordinates�

Phase �� calculate element weights

calculate virtual coordinates

Phase �� find element ordering with small bandwidth

a� use virtual coordinates for initial ordering

b� optimize bandwidth of ordering

Phase �� find good element division using ordering and weights

Phase �� optimize element division using communication analysis

Figure �� One�dimensional division algorithm�

Before the actual division� an ordering of the elements with a small bandwidth is calculated
�phase ��� This bandwidth is de�ned as the maximum distance �that is� the di�erence of
indices in the ordering� of two adjacent elements� A small bandwidth is a requirement for
the following division step� Finding such an ordering is again an np�complete problem� so
we cannot obtain an optimal solution� We use a heuristic� which calculates the ordering
in two steps� First we need a simple method to obtain an initial ordering �a�� In our
case we use a sorting of elements according to their virtual coordinates� In the second
step �b�� this ordering is optimized� e�g�� by exchanging pairs of elements if this improves
the bandwidth until is no more exchange is possible�
With the obtained ordering and the element weights� the actual division is now calculated�
First the elements are divided into ordered parts with equal weights �phase 	�� Then this
division is analysed in terms of resulting borders and communications and is optimized by

�

reducing the border length and number of communication steps by exchanging elements
with equal weights between two partitions �phase ���
If we now want to construct a division algorithm for the two�dimensional grid topology�
we can use the algorithm described above as a building block� The resulting algorithm
has the structure shown in Figure �� The only di�erence between the one� and the two�
dimensional versions of the initialization phase is the number of virtual coordinates which
here� of course� is two� Phase � has the same task� which is much more complex in the
two�dimensional case� The middle phase here is a two�stage use of the one�dimensional
strategy� where the grid is �rst cut in the x�dimension and then all pieces are cut in the
y�dimension� This strategy can be substituted by a sort of recursive bisectioning� where
in every step the grid is cut into two pieces in the larger dimension and both pieces are
cut further using the same strategy�

Phase � �initialization� similar to �D�algorithm

for �processors in x�dimension do

calculate meta�division M

using phases � and � of �D�algorithm

divide meta�division M in y�dimension

using phases � and � of �D�algorithm

Phase � �optimization� similar to �D�algorithm

Figure �� Two�dimensional division algorithm�

Adaptive re�nement and dynamic optimization

The parallelization approach described in the last two sections is well suited for �xed grids�
which remain constant through all calculation steps� We will now introduce a simple but
e�ective method for an adaptive grid re�nement and an improvement of the parallel
algorithm which takes into account that the work load for each processor has changed
after every re�nement step� Before we can describe the algorithms� some questions have
to be answered
 what does re�nement mean exactly� which parts should be re�ned and
how can we construct the new� re�ned grid�

� Re�nement in our case means the splitting of elements into smaller elements� which
replace the original elements� An additional type of re�nement is the replacement
of a group of small elements by a smaller group of larger elements� This procedure
is useful if the density of a part of the grid is higher than necessary� At the moment
only the �rst type of re�nement is implemented� so in the following we will only
describe the splitting of elements�

�

� The question of which parts should be re�ned now turns into the selection of el�
ements that should be re�ned� Therefore� we choose for a given �ow problem a
characteristic function� e�g� the pressure �eld� We then look for elements where the
gradient of this function exceeds a given bound�

� How should these elements be split into smaller ones� In Figure � two possibilities
are shown
 using the left alternative leads to numerical problems� caused by the
shape of the resulting triangles� Especially if an element is re�ned several times�
the new grid nodes will be placed near to the remaining sides� leading to very �at
triangles� which should be avoided� Hence we must use the right alternative� which
leads to the problem that the new nodes are placed on the edges of a triangle� This
would result in an inconsistent grid� because all nodes must be corners of elements�
The solution of this problem is an additional splitting of elements with such edges�
Elements with two or three re�ned edges must be split into four elements �as if
they were originally selected for re�nement�� Elements with only one re�ned edge
must be split into two elements in a canonical way� This additional splitting of
elements can lead to new elements with nodes on their edges� so the process has to
be repeated until no more splitting is necessary�

K1

K2 K3

K4 K6

K5

E1

E2 E3
E4

nodes: 3 old -> 6 new
elements: 1 old -> 4 new

K1

K2 K3

K4

E1

E2

E3

elements: 1 old -> 3 new
nodes: 3 old -> 4 new

Figure �� Splitting of an element�

� How can we construct the new grid� Every split element will be replaced by one of
the new elements and the remaining new elements will be added to the element list�
All new nodes are added to the node list and all new border nodes and elements
are added to the appropriate lists� A new local time step for every element must
be calculated and in the case of an non�stationary solution a new global time step
must be calculated from the local time steps� After this� some derived values such
as element sizes have to be reinitialized and then the calculations can continue�

The resulting re�nement algorithm is shown in Figure �� All steps can be implemented in
a straightforward manner with one exception
 the colouring of the elements that must be
re�ned to obtain a consistent grid� This can be done using the recursive algorithm shown
in Figure ��

�

calculate reference function F

Delta 	 �Max�F� � Min�F��
 refine rate

for �El in element�list�

dF 	 local gradient of F in El

if �dF � Delta�

mark El with red

end�if

end�for

mark all elements with nodes on edges�

with yellow for full refinement

with green for half refinement

refine all elements full or half according to their colour

Figure 	� Re
nement algorithm�

for �El in element�list�

if �El is marked red�

mark neighbours�El�

end�if

end�for

mark neighbours�El��

for �E in neighbour�elements�El��

if �E is marked white�

mark E with green

else if �E is marked green�

mark E with yellow

mark neighbours�E�

end�if

end�for

end�mark neighbours

Figure �� Colouring algorithm�

��

To use this adaptive re�nement in the parallel algorithm� we have to analyse the di�erent
parts for parallelism

calculate reference function F

local data� fully parallel� no communication
Delta 	 �Max�F� � Min�F��
 refine rate

local data� global min�max� mostly parallel� global communication
mark elements with red or white

local data� fully parallel� no communication
mark additional elements with yellow or green

global data� sequential� global communication �collection�
refinement of elements

global data� sequential� global communication �broadcast�
construct new node� and element�lists

local data� fully parallel� no communication
reinitialize all dependent variables

local data� fully parallel� local communications

We can see that most of the parts can be performed in parallel with no or little communi�
cation� The only exception is the additional colouring of elements and the construction of
new elements and nodes� These parts operate on global data structures� so that a parallel
version of them must lead to a very high degree of global communication� As these parts
need only very little of the time spent on the complete re�nement step� we decided to
keep this part sequential�
For a typical �ow calculation up to �ve re�nement steps are su�cient in most cases� so
that the lack of parallelism in the re�nement step decribed above is not very problematic�
Much more important is the fact that after a re�nement step the work load of every
processor has changed� As the re�nement takes place in only small regions� there are a few
processors with a load that is much higher than the load of most of the other processors�
This would not only slow down the calculations� but also can lead to memory problems
if further re�nements in the same region take place� The solution of this problem is a
dynamic load balancing� where parts of the sub�grids are exchanged between processors
until equal work load and nearly equal memory consumption is reached�
The load is obtained by simply measuring the cpu time needed for one time step includ�
ing communication times but excluding idle times� The items that could be exchanged
between processors are single elements including their nodes and all the related data� To
achieve this e�ciently� we had to use dynamic data structures for all element and node
data� There is one data block for every node and every element� These blocks are linked
together in many di�erent dynamic lists� The exchange of one element between two pro�
cessors is therefore a complex operation
 the element has to be removed from all lists
on one processor and must be included in all lists on the other processor� Since nodes
can be used on more than one processor� the nodes belonging to that element must not
be exchanged in every case� It must be checked whether they are already on the target
processor and if other elements on the sending processor will need them� too� Nodes not
availiable on the target processor must be sent to it and nodes which are no longer needed
on the sending processor must be deleted there�
One remaining problem is to �nd an e�cient strategy for the exchange of elements� A
good strategy should deliver an even load balance after only a few steps and every step

��

should be �nished in a short time� As elements can only be exchanged between direct
neighbours� our �rst approach was a local exchange between pairs of processors� This
resulted in fast exchange steps� but showed a bad convergence behaviour� We will present
here a global strategy� where the balancing is carried out along the rows and columns of
the processor grid� The areas for load balancing are alternating all rows and all columns�
where every row �column� is treated independently of all other rows �columns�� If we
interpret a single row �column� as a tree with the middle processor as the root� we can
use a modi�cation of a tree�balancing algorithm developed for combinatorial optimization
problems ����

if �root�

receive load sub l �load of left subtree�

receive load sub r �load of right subtree�

global load 	 local load � loads of subtrees

load opt 	 global load � num procs

send load opt to subtrees

load move l 	 load opt
 num sub l � load sub l

load move r 	 load opt
 num sub r � load sub r

else

receive load sub from subtree �if not leaf�

load sub n me �	 load sub

send load sub n me to parent node

receive load opt from parent node

send load opt to subtree �if not leaf�

load move sub 	 load opt
 num sub � load sub

load move top 	 load sub n me � �num sub � ��
 load opt

end�if

Figure �� Dynamic optimization
step ���

This algorithm uses two steps
 in a �rst step information about the local loads of the tree
is moving up to the root and the computed optimal load value is propagated down the
tree� In a second step the actual exchange is done according to the optimal loads found
in the �rst step� The structure of the �rst step is shown in Figure �� where num procs is
the number of processors in the tree �� row or column� and load move direction is the
load that has to be moved in that direction in the second step�

�	

The second step is very simple
 all processors translate the loads they have to move into
the appropriate number of elements and exchange these elements� For the decision� which
element to send in a speci�c direction� the virtual coordinates of this element are looked
up and the element with the greatest value is chosen� With this strategy the resulting
sub�grids of the new grid division will have nearly optimal shapes�

Results

The algorithms described in the previous sections were tested with many di�erent grids
for various �ow problems� As a kind of benchmark problem we use the non�stationary
calculation of inviscid �ow behind a cylinder� resulting in a vortex street� One grid for this
problem was used for all our implementations of the parallel calculations� This grid has
a size of about �	 ��� grid points which are forming nearly 	� ��� elements �P��� Other
problems used with the adaptive re�nement procedure are stationary turbine �ows with
grids of di�erent sizes� all of them using periodic borders�
All measurements were made with a ��	
 processor system located at the �PC�� of the
University of Paderborn� It consists of T��� Transputers� each of them equipped with

Mbyte local memory and coupled together as a two�dimensional grid� Our algorithms are
all coded in Ansi�C using the Parix communication library�
First we will present some results for the dynamic load balancing� Figure �� shows the
di�erent convergence behaviour of two di�erent strategies� To investigate this� we used a
start division of our reference problem with an extremely bad load balancing �because of
the memory needs of the start division the following results are obtained with a smaller
grid with ���� elements and an �x� processor array � larger grids on larger arrays show
the same behaviour� but cannot be started with this extreme imbalance�� The left�hand
picture shows the results of a local strategy� where the balance improves in the �rst steps�
but stays away from the optimum for a large number of optimization steps� The right�
hand picture shows the e�ects of the described global balancing� where after two steps
the balance is nearly optimal�

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40

Lo
ad

Timesteps

min
med
max

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Lo
ad

Timesteps

min
med
max

Figure ��� Di�erent load balancing strategies�

An example for the adaptive re�nement procedure is shown in Figure ��� where the grid
and the pressure �eld around a turbine are shown after �ve re�nement steps� One can see
the high resolution of the two shocks made visible by the adaptive re�nements� Without
re�nement one of these e�ects can only be guessed and the other is missing completely�

��

Figure ��� Grid and isobars after
ve re
nement steps
complete and zoomed��

The development of the corresponding loads can be seen in Figure �	� After each re�ne�
ment step� four balancing steps were carried out� using the global strategy� The picture
shows the e�cient and fast balancing of this method�

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000

Lo
ad

Timesteps

min
med
max

Figure ��� Load balancing for adaptive re
nements�

Finally� we will present results for large processor numbers� In Figure �� the speed�ups
for some parameter settings of our reference problem are shown� In the speed�up curves
the di�erence between the logical topologies �D�pipeline and 	D�grid is shown� In the
left part of the picture we can see that for up to 	�� processors we achieve nearly linear
speed�up with the grid topology� whereas the pipe topology is linear for a maximum of
only �	� processors� If we increase the size of the problem �P	�� the speed�ups are closer
to the theoretical values� which proves the scalability of the parallelization approach�

�

�

�
 �	� ��	 	�� n

�

�

�	�

��	

	��

Sn

Pipe �P��
 �
Grid �P��
 �
Grid �P	�
 �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
� ��

�

�

�

� ���

�

�

�

� 	��

�

	�� ��	 ��� ��	
 n

�

	��

��	

���

��	

Sn

Pipe �P��
 �
Grid �P��
 �
Grid �P��
 �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � ���
�

�
�

� �	�
�

�

�

� ���

Figure ��� Speed�ups for di�erent topologies�

If we increase the number of processors �right�hand picture�� we observe that the grid
topology again is superior to the pipe topology� but the increase of speed�up is no longer
linear� It is a common problem for most parallel algorithms that for a �xed problem
size there is always a number of processors where the speed�up is no longer increasing
proportionally to the number of processors� If we want to obtain the same e�ciencies as
for 	�� processors� we have to use grids with approximately �� ��� elements� This was
impossible on the T� system used� because such problems are too large for it� The largest
problem that �ts into the
 Mbyte nodes has about �	 ��� elements �P��� so that the
speed�ups for ��	
 processors are limited on this machine� Nevertheless� the increase of
speed�up to ��� again shows the scalability of our algorithm�

Conclusion

In this paper we have introduced a parallelization for the calculation of �uid �ow problems
on unstructured grids� An existing sequential algorithm has been adjusted for Transputer
systems under Parix and investigations on the parallelization of this problem have been
made� For two logical processor topologies we have developed di�erent grid division algo�
rithms and compared them for some benchmark problems� The grid topology has shown
its superiority over the pipe topology� This was expected since a two�dimensional topology
must be better suited for two�dimensional grids than a one�dimensional topology which is
not scalable for large processor numbers� The speed�up measurements on a ��	
 Trans�
puter cluster showed the general usefulness of the choosen approach for massively parallel
systems�
Further� we presented an adaptive re�nement procedure which is used for the solution of
�ow problemswith a priori unknown local e�ects� For the parallel version of this procedure
we showed the need for a dynamic load balancing� A global strategy for this balancing
was described in detail� We presented results for the performance of this strategy and
compared it with a local strategy� We showed the excellent convergence behaviour of our
strategy and the usefulness of the dynamic load balancing together with the adaptive
re�nement�

��

Dynamic load balancing is fully parallel and hardware independent� so that changes of
the basic hardware nodes can be done without changing the developed algorithm� To
exploit this advantage of our algorithms� they must be implemented in as portable a
manner as possible� To achieve this� our further research will concentrate on porting
the current implementation to mpi and studying the resulting performance on di�erent
hardware platforms�

References

��� A� Vornberger� Str�omungsberechnung auf unstrukturierten Netzen mit der Methode der

�niten Elemente� Ph�D� Thesis� RWTH Aachen� �����

��� W�Koschel and A�Vornberger� Turbomachinery Flow Calculation on Unstructured Grids

Using the Finite Element Method� Finite Approximations in Fluid Mechanics II� Notes
on Numerical Fluid Mechanics� Vol� ��� pp� �������� Aachen� �����

��� F� Lohmeyer� O�Vornberger� K� Zeppenfeld and A�Vornberger� Parallel Flow Calculations

on Transputers� International Journal of Numerical Methods for Heat and Fluid Flow�
Vol� �� pp� �������� �����

��� F� Lohmeyer and O�Vornberger� CFD with parallel FEM on Transputer Networks� Flow
Simulation with High�Performance Computers I� Notes on Numerical Fluid Mechanics�
Vol� ��� pp� ������	� Vieweg� Braunschweig� ����

��� F� Lohmeyer and O�Vornberger� Flow Simulation with FEM on Massively Parallel Sys�

tems� Computational Fluid Dynamics on Parallel Systems� Notes on Numerical Fluid
Mechanics� Vol� ��� pp� ��	����� Vieweg� Braunschweig� �����

��� H�Greza� S� Bikker and W�Koschel� E�cient FEM Flow Simulation on Unstructured

Adaptive Meshes� In this publication�

�	� M�B�ohm and E� Speckenmeier� E�ziente Lastausgleichsalgorithmen� Proceedings of TAT�
��� Aachen� �����

��

