Procs. 1st IEE/IEEE Int. Conf. on GAs in Engineering Systems: Innovations and Applications,
GALESIA 95, 12-14 Sep 1995, Sheffield, U.K., IEE Conf. Publication No. 414, pp. 430-435

GENETIC DESIGN OF VLSI-LAYOUTS

Volker Schnecke] Oliver Vornberger

University of Osnabruck
Department of Math./Computer Science
D-49069 Osnabruck, Germany
{volker|oliver } @informatik.uni-osnabrueck.de
http://brahms.informatik.uni-osnabrueck.de/prakt_eng/prakt.html

Abstract — A genetic algorithm for
the physical design of VLSI-chips is
presented. The algorithm simultane-
ously optimizes the placement of the
cells with the total routing. During
the placement the detailed routing is
done, while the global routes are opti-
mized by the genetic algorithm. This
is just opposed to the usual serial ap-
proach, where the computation of the
detailed routing is the last step in the
layout-design.

INTRODUCTION

The physical design of VLSI-chips is a very
complex optimization problem, which is nor-
mally solved in various sub-steps. Because
there are many interdependencies between
these sub-steps it is recommendable to com-
bine some of them. Due to the complexity
only heuristic approaches like genetic algo-
rithms can be used.

The main problem when solving ‘real’ appli-
cations with genetic algorithms is to find a
useful genotype encoding for a single solu-
tion. Qur approach uses a binary tree with
additional information for each node. The
main advantage here is the straightforward
implementation of the genetic operators.

In the following there is a detailed descrip-
tion given of the classical way of solving the
physical design of VLSI-chips. After this
our genetic algorithm is described, which
combines most of the typical sub-steps. At
the end some first results are presented and
some plans for extensions are given.

*The work of this author is being supported
in the BMBF-Project ‘HYBRID—-Applications of
Parallel Genetic Algorithms for Combinatorial
Optimization’.

PHYSICAL VLSI-DESIGN

The design-cycle of VLSI-chips consists of
different consecutive steps from high-level
synthesis (functional design) to production
(packaging) [9]. The physical design is the
process of transforming a circuit description
into the physical layout, which describes the
position of cells and routes for the intercon-
nections between them. Figure 1 shows a
schematic representation of a layout. The
main concern in the physical design of VLSI-
chips is to find a layout with minimal area,
further the total wirelength has to be mini-
mized. For some critical nets there are hard
limitations for the maximal wirelength.

L L
b e

rey

il

|
B
._]..

Lol JIl."

Figure 1: A layout of a chip

Due to its complexity, the physical design is
normally broken in various sub-steps:

1. First the circuit has to be partitioned to
generate some (up to 50) macro cells.

2. In the floorplanning phase the cells have
to be placed on the layout surface.

3. After placement the global routing has
to be done. In this step the ‘loose’

routes for the interconnections between
the single modules (macro cells) are de-
termined.

4. In the detailed routing the exact routes
for the interconnection wires in the
channels between the macro cells have
to be computed.

5. The last step in the physical design is
the compaction of the layout, where it
is compressed in all dimensions so that
the total area is reduced.

This classical approach of the physical de-
sign 1s strongly serial with many interdepen-
dencies between the sub-steps. For exam-
ple during floorplanning and global routing
there must be enough routing space reserved
to complete the exact wiring in the detailed
routing phase. Otherwise the placement has
to be corrected and the global routing has
to be computed again.

In the following there is a closer look at steps
2. to 4., because floorplanning and routing
are solved by the application described in
this paper.

Floorplanning

In the floorplanning phase, the macro cells
have to be positioned on the layout surface
in such a manner that no blocks overlap
and that there is enough space left to com-
plete the interconnections. The input for the
floorplanning is a set of modules, a list of ter-
minals (pins for interconnections) for each
module and a netlist, which describes the
terminals which have to be connected. At
this stage, good estimates for the area of the
single macro cells are available, but their ex-
act dimensions can still vary in a wide range.
Consider for example a register file module
consisting of 64 registers. It can be orga-
nized as a 1 x64, 2x 32, 4x 16 or 8 x 8 array
which yields four implementations with dif-
ferent aspect ratios. These alternatives are
described by shape-functions [7]. A shape-
function is a list of feasible height-/width-
combinations for the layout of a single macro
cell (cf. fig. 2). The result of the floorplan-
ning phase is the sized floorplan, which de-
scribes the position of the cells in the layout
and the chosen implementations for the flex-

ible cells.

There exist many different approaches to the
floorplanning problem. Wimer et al. [10]

—>JQ—0>
\

Figure 2: The shape-function for a
macro cell with three differ-
ent implementations

describe a branch and bound approach for
the floorplan sizing problem, i.e. finding an
optimal combination of all possible layout-
alternatives for all modules after placement.
While their algorithm is able to find the best
solution for this problem, it is very time
consuming, especially for real problem in-
stances. Cohoon et al. [2] implemented a
genetic algorithm for the whole floorplan-
ning problem. Their algorithm makes use of
estimates for the required routing space to
ensure completion of the interconnections.
Another more often used heuristic solution
method for placement is Simulated Anneal-

ing [8, 11].

Routing

The aim of the routing phase is to find the
geometrical layouts for all nets. In the floor-
planning phase space on the layout surface
has been provided to complete the intercon-
nections. This space can be described as
a collection of single routing regions. Each
region has a fixed capacity, i.e. a maxi-
mum number of wires which can be routed
through this region, and a number of termi-
nals, 1. e. pins on the borders of the adjacent
cells.

Due to the complexity, the routing is done
in two sub-phases. In the global routing, the
‘loose’ routes for the nets are determined.
For the computation of the global routing,
the routing space 1s represented as a graph,
the edges of this graph represent the rout-
ing regions and are weighted with the corre-
sponding capacities (cf. fig. 3). The global

routing 1s described by a list of routing re-
gions for each net of the circuit, with none
of the capacities of any routing region being

exceeded.

O | B0 [

o e

Figure 3: A routing graph (left) and a
global route for a four ter-
minal net (right)

After global routing is done, for each routing
region the number of nets routed through it
is known. In the detailed routing phase the
exact routes for the wires have to be deter-
mined (figure 4). This is done incrementally,
1.e. one channel is routed at a time in a pre-

defined order.

——= Ll

Figure 4: The detailed routing inside
a channel

The global routing can be solved by graph
based techniques, Integer Programming or
hierarchical approaches [5]. For the de-
tailed routing there exist solutions based on
Greedy Methods, graph algorithms or hier-
archical approaches [9]. The complexity and
routability of a layout depends on the num-
ber of layers which can be used for the com-
pletion of the interconnections. Usually in
macro cell layout there are two layers and
the routing is done in the manhattan-model,
1.e. one layer is for the vertical, the other for
the horizontal wires and the nets change the
layer when changing their direction.

THE GENETIC ALGORITHM

Our genetic algorithm combines the floor-
planning with the routing phases. Because

placement and even detailed routing are op-
timized in a single step, there is no longer the
need for compaction. The main difference to
the classical approach is that when building
an individual, detailed routing is done dur-
ing placement of the modules. The global
routes and the general placement are opti-
mized by the genetic algorithm.

The genotype

Figure 5: The slicing tree for the lay-
out shown in figure 1

The genotype is encoded by a binary slicing
tree with additional sizing and routing infor-
mation for each node. The leaves of this tree
represent the macro cells (blocks) and the
inner nodes represent partial layouts (meta-
blocks), as shown in figure 5. The tree is
constructed in a bottom-up fashion. When
building a meta-block out of two blocks (or
meta-blocks) the arrangement and the ro-
tation of the two blocks are fixed. The ex-
act routing in the channel between these two
blocks is done (cf. fig. 6), i.e. nets between
the two blocks are connected and routed.
Nets which connect other terminals than
those on the borders of the two blocks are
passed on as terminals to the borders of the
resulting meta-block.

If the blocks have different layout-alter-
natives, all necessary combinations of alter-
natives are stored in the shape-function of
the resulting meta-block. The number of
combinations does not grow exponentially
in the number of blocks contained in a sin-
gle meta-block, because some of the combi-

4 6 |
| |
|, 10— 7
a4 Bl B2 o
|, 12
T 11 -5
785 I I
13 8
4 6 4 6
l I]]
—1 —1
- B1 [7
8 —3
EE) o m
8 — 8
(qV]
11— 11—
m
—13 —13
I I I I
10 12 10 12

Figure 6: Combining two blocks to a
meta-block

nations are redundant (cf. Fig. 7). Storing
all alternatives for the meta-blocks is use-
ful because one can not decide in the lower
level of the tree, which implementation of a
meta-block would be the best to minimize
the overall area of the layout.

e layout alternatives
for meta-block M
o redundant
layout alternatives

h 4 i ® e B,
e

1| - = = By
g

h M
t —

width

Figure 7: The construction of the
shape-function for a meta-
block M for block B; being
positioned upon Bs, or vice
versa

Creation of the initial population

It has proved to be useful to start with a
population of not randomly created individ-

uals. Here an iterated matching approach
is implemented which yields densely packed
meta-blocks in the individuals. For this, all
possible pairs of modules are built and val-
ued by the wasted space inside the result-
ing meta-blocks. Then a set of pairs with
minimal overall waste is chosen to built the
elements for the next iteration of match-
ing. This iteration results in a set of densely
packed meta-blocks with four blocks inside.
The matching-process is iterated until the
slicing-tree for a single individual is com-
pleted.

Mutation

There are different kinds of mutations which
are applied with different frequencies. They
change the structure of the slicing tree by
exchanging blocks or meta-blocks and mov-
ing subtrees to other positions in the tree
which corresponds to moving partial layouts
on the layout surface. Further the mutation-
operator rotates blocks or changes the posi-
tion of two blocks inside a meta-block. En-
coding different implementations for each
meta-block in a genotype here enhances the
performance, too, because after mutation
the best implementation of a moved block
in its new environment can be chosen. This
might differ from the best implementation
at its old position.

Crossover

The crossover-operator chooses two parent-
individuals of which one offspring is pro-
duced by combining two disjunct meta-
blocks (i.e. subtrees) from both individu-
als. It has turned out to be not helpful
to do some ‘intelligent’ crossover, 1. e. choos-
ing densely packed meta-blocks in the par-
ent individuals, so the meta-blocks are cho-
sen randomly in the actual implementation.
It is unlikely to get a complete layout when
combining the meta-blocks, so the missing
blocks have to be added. When doing this,
the iterated matching method is used again
to take care that the added blocks built a
densely packed part in the layout which is
represented by the offspring.

After the execution of a genetic operator,
the slicing tree is traversed to compute the
changed routing information and the shape-
functions for all inner nodes.

RESULTS

| | ami33_3 | ami49 |

cells 33 49
impl. per cell 3 1
nets 123 408

Table 1: The benchmark instances

The algorithm has been tested on real-life
circuits chosen from a layout-benchmark
suite maintained by MCNC (North Car-
olina’s microelectronics, computing and net-
working center), see table 1. The instances
are layout-problems of the field of full-
custom macro-cell layout.

Figure 8: Layout for ami49 (area:

57.3mm?)

Figure 8 shows a layout for the instance
ami49, a problem with only fixed-size cells.
The dark blocks show the cells, the lighter
surface represents the routing space, while
the white area shows the wasted space inside
the layout. The actual implementation does
not do the detailed routing but adds an es-
timated routing space when combining two
blocks. The estimation is quite bad, because
actually one track is reserved for each net in
the channel between two blocks. Implement-
ing a better heuristic for the detailed routing
would further reduce the channel width.

Figure 9 shows the performance of the ge-
netic algorithm for circuit ame49. The
best fitness averaged over 10 runs is shown
for both cases up to 400 generations, the

72.0
70.0
68.0 1

66.0 - \\ random
layout ' creation
area 64.0

2
mm
[] 62.0

60.0
58.0 - iterated matching

| | | |
100 200 300 400

generation

Figure 9: The performance with re-
spect to the creation of the
initial population (ami49)

population-size was 20 individuals. The up-
per curve describes the progress of the fit-
ness (layout area) for runs of the algorithm
started with populations of totally random
generated individuals. The lower curve de-
scribes the performance for runs which have
started with a set of very good individuals,
which have been generated by application of
the iterated matching. For an impression of
the solution quality, which was on average
58.9mm? for the 10 runs with the ‘intelli-
gent’ creation of the initial population, note
that the layout shown in figure 8 has an area

of 57.3 mm2.

For circuits with flexible cells it is helpful to
store all non-redundant layout-alternatives
for the meta-blocks in shape-functions to en-
hance the quality of the initial population.
This also increases the performance of the
mutation-operator, because after the move-
ment of a meta-block its best implementa-
tion on the new position can be chosen. Fig-
ure 10 shows the benefit of storing shape-
functions even for the meta-blocks for the
circuit am:33_3 with 33 flexible cells, each
having three different implementations. It is
seen that the version which stores all alter-
natives for the meta-blocks clearly outper-
formes the version of the algorithm which is
described in the upper curve. Here, when
pairing two flexible blocks to a meta-block,
only the implementation with the minimal
area is stored.

3.2 1
3.0 e only best
’ combination
2.8 \sgeﬂ
layout 2.6
area 2.4 4
[mm?]
2.2
2.0 —\ shape-functions also
r for meta-blocks
O 7 \\-\‘-‘——M

| | | |
100 200 300 400

generation

Figure 10: The benefit of shape-func-
tions for meta-blocks, aver-
age of 10 runs (ami33.3)

FUTURE WORK

Future work on this project will include the
computation and visualization of the ex-
act wiring, which will replace the adding
of routing-space like it is done at the mo-
ment. With this it will be possible to com-
prise the wirelength in the fitness, which
only describes the layout area in the actual
implementation. For performance enhance-
ment the concept of Competing Subpopu-
lations, introduced by Schlierkamp-Voosen
and Miihlenbein [6], will be implemented.
Though in this paper only results of sequen-
tial runs are presented, the algorithm is al-
ready parallelized with the use of the PVM
(Parallel Virtual Machine) message-passing
interface [4], but there will be a special effort
in a more efficient parallelization.

CONCLUSIONS

An ingenious approach for the layout-design
of VLSI-chips has been presented. It is con-
trary to the classical, serial process, where
first the cells are placed and global routes
for the nets are determined, before the de-
tailed routing is done. There, global rout-
ing and floorplanning is done with having
a global view on the developing layout. In
the described algorithm, the detailed rout-
ing is done during the composition of par-
tial layouts which are joined to a complete
solution during the construction of the geno-
type, a binary slicing tree. In this approach,

the global view remains to the genetic al-
gorithm, which optimizes the general place-
ment and the global routes on the layout
surface.

References

[1] J. P. Cohoon, W. D. Paris, Genetic
Placement, Proc. of IEEE Int. Conf. on
CAD 1986, 422-425

[2] J. P. Cohoon, S. U. Hegde, W. N. Mar-
tin, D. S. Richards, Dustributed Ge-
netic Algorithms for the Floorplan De-
sign Problem, IEEE Trans. on CAD,
Vol. 10 (4), April 1991, 483-492

[3] H. Esbensen, A Macro-Cell Global
Router based on two Genetic Algo-
rithms, Proc. of FEuropean Design
Automation Conf. Euro-DAC 1994,
Grenoble, France, Sep. 19-23, 1994,
428-433

[4] A. Geist, A. Beguelin, J. Dongarra,
W. Jiang, R. Manchek, V. Sunderam,
PVM: Parallel Virtual Machine, MIT
Press, 1994

[6] T. Lengauer, Combinatorial Algorithms
for Integrated Circuit Layout, John Wi-
ley & Sons, 1990

[6] D. Schlierkamp-Voosen, H. Mihlen-
bein, Strategy Adaption by Compet-
wing Subpopulations, 3rd Conf. on Par-
allel Problem Solving from Nature,
Jerusalem, Israel, Oct. 9-14, 1994,
Springer Lecture Notes in Computer

Science 866 (1994), 199-208

[7] R. Otten, Efficient Floorplan Optimiza-
tion, Proc. of Int. Conf. on Comp. De-
sign 1983, 499-502

[8] C. Sechen, A. Sangiovanni-Vincentelli,
The timberwolf placement and routing
package, TEEE J. of Solid-State Cir-
cuits, Vol. SC-20 (1985), 510-522

[9] N. Sherwani, Algorithms for VLSI
Physical Design Automation, Kluwer
Academic Publishers, 1993

[10] S. Wimer, I. Koren, I. Cederbaum, Op-
timal aspect ratios of building blocks
in VLSI, 25th ACM/IEEE Design Au-
tomation Conference 1988, 66—72

[11] D. F. Wong, H. W. Leong, C. L. Liu,
Simulated Annealing for VLSI Design,
Kluwer Academic Publishers, 1988

