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Abstract— Genetic algorithms have proven to be a well-
suited technique for solving selected combinatorial opti-
mization problems. When solving real-world problems, of-
ten the main task is to find a proper representation for
the candidate solutions. Strings of elementary data types
with standard genetic operators may tend to create infea-
sible individuals during the search because of the discrete
and often constrained search space. This article introduces
a generally applicable representation for two-dimensional
combinatorial placement and packing problems. Empirical
results are presented for two constrained placement prob-
lems, the facility layout problem and the generation of VLSI
macro-cell layouts. For multi-objective optimization prob-
lems, common approaches often deal with the different ob-
jectives in different phases, thus are unable to efficiently
solve the global problem. Due to a tree-structured genotype
representation and hybrid, problem-specific operators, the
proposed approach is able to deal with different constraints
and objectives in one optimization step.

Keywords— VLSI physical design, facility layout prob-
lem, combinatorial optimization, multiparent recombina-
tion, tree-structured genotype representation

|. INTRODUCTION

Constrained placement problems deal with the compu-
tation of an optimal arrangement of items on a planar
site. The objective function for these optimization prob-
lems is based on the overall rectangular area of occupied
space and on additional terms that reflect problem-specific
constraints. The basic variants of these problems are the
unconstrained two-dimensional packing problem and the
guadratic assignment problem. In the case of the pack-
ing problem, a set of rectangular blocks has to be ar-
ranged such that no blocks overlap each other. The area
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(or perimeter) of the rectangle circumscribing all blocks
has to be minimal, hence the optimal packing pattern is
that with minimal waste inside the enveloping rectangle.
In the quadratic assignment problem [1], a set of items has
to be matched to fixed arranged bins. A flow matrix de-
fines the connectivity between the items. The objective is
to find amapping with minimal flow costs, these being the
sum of the products of flow and distance between each pair
of items. The quadratic assignment problem is an NP-hard
optimization problem [2].

The constrained placement problems that will be de-
scribed in the following can be seen as an extension both
of the packing problem and the quadratic assignment prob-
lem. Rectangular blocks are placed with some defined
connectivity, which highly influences the objective func-
tion. The rectangular blocks do not have fixed shapes. For
each block, the area is given and either a set of admis
sible shapes or an interval for its admissible aspect ratio
(width/height ratio) is provided. Thus, in addition to find-
ing an arrangement of the blocks, feasible shapes are also
determined. Because of the complexity, exact techniques
can only be used to solve trivial instances of these opti-
mization problems (fewer than ten blocks).

Multi-objective optimization problems, like those de-
scribed in this article, are found in many engineering ap-
plications. To dea with the different, often conflicting,
objectives, Pareto-optimal [3] or divide-and-conquer ap-
proaches [4] are typicaly used. In the latter, the prob-
lem is divided into subproblems, which are solved more or
less independently. Multistage approaches for constrained
placement problems first compute an approximately opti-
mal arrangement of the blocks based on their connectivity,
and then fix their shapes in a second stage. In this article,
hybrid genetic algorithms are introduced to deal with both
the arrangement and sizing of the blocks in one optimiza-
tion step. To deal with the shape constraints, shape func-
tions[5], acommon concept from VLS| design, areused to
consider multiple shapes for the blocks during their place-
ment. The connectivity between the blocks is taken into
account by iteratively pairing blocks based on the com-
putation of a weighted matching [6]. A novel genotype
representation based on binary trees isintroduced, and the
genetic operators work directly on thistree structure. Mul-



tiparent gene-pool recombination is proposed, where sub-
trees from more than two parent individuals are composed
into atree representing an offspring.

[l. BACKGROUND

The two placement problems addressed in this article
are the facility layout problem and VLS macro-cell layout
generation. In this section, these combinatorial optimiza-
tion problems are introduced, and related work, with afo-
cus on evolution-based approaches, is described. The fa-
cility layout problem, as defined here, is a basic variant of
placement problems, whereas the macro-cell layout gener-
ation is areal-world optimization problem. At the end of
this article, empirical results for benchmark problems for
both applications are presented.

A. Thefacility layout problem

Thefacility layout problem deals with a set of rectangu-
lar facilities to be placed at favorable positions on aplanar
site. A flow matrix M = [m;jl; j=1,...,» definesthe weights
of connectivity for each pair of facilities. The objective
is to find a nonoverlapping arrangement of the facilities
with minimal flow costs ZZ]-ZI d;j - m;j, with d;; being
the distance between the centroids of facilities f and f;
(Figure 1). The variant of the facility layout problem ad-
dressed in this article involves nonidentical, flexible facili-
ties. Here, no fixed dimensions for the facilities are given;
only constraints regarding their admissible shapes are pro-
vided. These additional degrees of freedom increase the
complexity of the optimization problem, since in addition
to identifying a proper arrangement of the facilities, their
shapes have to be fixed. This can be seen as two separate
optimization tasks. Different variants of the facility layout
problem have been introduced [7], [8], for instance with an

Fig. 1. The schematic representation of a solution to the facility
layout problem including five rectangular facilities f; to f5.
The objective is to minimize the flow costs based on the
sum of products of flow m;; and distance d;; between the
centroids for each pair of facilities.

irregular sitefor placing the facilities, with preoccupied re-
gions on the layout site, or with more than one layout site.
Applications of the facility layout problem include plan-
ning architectural spaces, such as offices and warehouses,
and designing manufacturing cells and control panels.

There exist various, in most cases heuristic, solution ap-
proaches to the facility layout problem [8]. In multistage
techniques, the rectangular facilities are first approximated
by circles with a dightly larger area than the area of the
actual facilities. An optimal arrangement according to the
flow between the centroids of the circles is computed, and
the exact shapes of the facilities are determined in asecond
step after fixing their positions. Examples of this approach
are presented by van Camp et al. [9] and Tam and Li [10].
Other approaches are based on tree representation of the
facility arrangement. Tam uses a genetic algorithm [11] or
simulated annealing [12]. In both approaches, all facili-
ties are initially clustered according to their connectivity.
These clusters characterize subtreesin atree containing all
facilities. Thetree definesafloorplan, i.e., apartitioning of
the overall area into separate rooms to which the facilities
are assigned. Each inner node of the tree is labeled with
the arrangement of the patterns represented by its subtrees
(placing the pattern characterized by the left subtree upon,
below, left, or right, relative to the other one). The struc-
ture of the tree and the mapping of facilities to its leaves
is fixed during the first step, then an optimal labeling of
al inner nodes is computed by using a genetic algorithm
or simulated annealing. Kado et al. [13] compare differ-
ent implementations of genetic algorithms based on Tam's
representation, hybridized with clustering methods. They
extend Tam's work by searching the space of all possi-
ble trees in contrast to the search for optimal labels for
the inner nodes in fixed tree structures. Garces-Perez et
al. [14] use atree representation without clustering when
solving the facility layout problem by genetic program-
ming (GP). However, due to the necessary restriction to
fixed-size trees with a predefined set of leaf labels, their
approach does not precisely fit the GP paradigm.

B. VLS macro-cell layout generation

The design of VLS (very large scale integrated) mi-
crochips is a process of many consecutive steps includ-
ing specification, functional design, circuit design, physi-
cal design, and fabrication [15]. Macro-cell layout gener-
ation is atask in the physical design cycle. The circuit is
partitioned and the components are grouped in functional
units, the macro-cells. These cells can be described asrect-
angular blocks with terminals (pins) along their borders.
These terminals have to be connected by signal nets, along
which power or signals (e. g., clock ticks) are transmitted



between the various units of the chip. A net can connect
two or more terminas, and some nets must be routed to
pads at the outer border of the layout, since they are in-
volved in the 1/O of the chip. The layout defines the posi-
tions of the cells and the routes chosen for the signal nets

(Figure 2).
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Fig. 2. The schematic representation of a VLS| macro-cell lay-
out, which shows the position of eight cells, the routes for
the signal nets, and the 1/0 pads.

Basicaly, the placement of macro-cells is quite simi-
lar to the facility layout problem, when taking the number
of terminals to be connected between two cells as a mea-
sure of their connectivity. However, the objective function
of this optimization problem is based on the layout area,
i.e., the area of the circumscribing rectangle. This areais
mainly influenced by the routing space, the area between
the cells occupied by the signal net wirings. The compu-
tation of the routes for the signal netsis usually separated
from the placement task. During placement, an estimated
amount of routing space is added between the cells. The
estimation of this amount is quite crucial, since adding too
much space can lead to sub-optimal layouts. Adding too
little space might rule out the optimal (shortest) routes for
al nets, or the completion of the interconnections can be-
come impossible. In the latter case, a rearrangement of
the cells is necessary. Therefore it is wise to integrate the
computation of the routes into the placement task.

In the common, multistage approaches to layout gener-
ation, there exist several methods to solve the placement
problem, which is the first step in this process [16], [15].
In force-directed placement, cells that are connected by
signal nets exert an attractive force on each other, which
is proportional to the number of these nets and the dis-
tance between the cells. Partition-based methods compute
a placement by recursively dividing the set of cells. At the
same time, the available chip areais partitioned, and each
set of cellsis assigned to one of the components. A very
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popular technique to compute the placement is simulated
annealing, which yields high-quality placements, but often
requires an excessive amount of computation time.

Because a macro-cell is constructed in a hierarchical
manner, its shape is not fixed, but a set of feasible imple-
mentations is provided. Thus, like in the facility layout
problem, the flexible cells must be sized during or after
placement. Thismore general placement problem is called
the floorplanning problem in VLSI design [17], [18]. It
is usually solved in two steps. First, a relative placement
is chosen. This is characterized by a floorplan that de-
scribes a partitioning of the layout areainto a set of rooms
to which the cells are mapped (see left side in Figure 3).
Then, those shapes of the flexible cellsthat yield an overall
minimal layout are determined. Sizing (floorplan area op-
timization) can be done by using rectangular dualization,
partitioning, or linear programming [17], [18].

Cohoon et al. [19], [20] offered the classical work on
using genetic algorithms for floorplanning. The arrange-
ment of the rooms on the layout surface was represented
in the genotype by a postfix notation of the corresponding
dlicing tree (see Figure 3 for an example of adlicing tree).
Chan et al. [21] introduce a bit-matrix representation for
placement. Here the layout area is divided into squares,
and the placement for asingle cell isdescribed by alinein
the bit-matrix. This encodes information about the occu-
pied sguares and the orientation of the cell. In the genetic
algorithms of Esbensen [22] or Esbensen and Mazumder
[23] a placement is encoded as a binary tree. Each node
of the tree represents a cell, and due to a given node order,
the placement can be sequentially generated by decoding
the genotype.

After either placement or floorplanning, routing of the
signa nets is performed. The area of the layout surface
that is not occupied by cells is subdivided into routing re-
gions, aregion being the empty area between two adjacent
cells. During global routing, the global routes for all nets
are determined. The global route of anet is acollection of
those routing regions it covers on its way between the ter-
minals it must connect. The routing regions are typically
represented by agraph, and the global routes are computed
by finding shortest paths between the terminals (Figure 4).
During computation of the global routing, capacity con-
straints based on the width of the routing regions have to
be considered. Thus, the amount of routing area reserved
during placement is crucial for the routability of the whole
layout, and sophisticated placement approaches try to in-
corporate as much as possible from the routing into the
placement process.



Fig. 3. A pattern describing afloorplanfor nineblocks (left) and
one corresponding dlicing tree (right); the leaves represent
the blocks and the inner nodes define the cut direction (v for
vertical, h for horizontal) used for recursively partitioning
the layout area.
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Fig. 4. A routing graph for alayout with ten blocks. The global
routefor asignal net connecting threeterminalsis shown by
the bold path, which was constructed by using shortest paths
in the graph to connect the terminals.

[1l. METHODS

All previous approaches treat the different objectives
(placement, sizing, and connectivity) of the optimization
problems in separate steps. A single objective is consid-
ered in each step, while approximations are used for the
others to keep the computation tractable. In contrast, our
hybrid genetic algorithms consider the different objectives
in a single optimization process. This is possible due to
the use of problem-specific heuristics such as dicing trees,
shape functions, and iterated matching, which are intro-
duced in this section.

A. Representing placement patterns by binary dlicing
trees

Two-dimensional packing or placement patterns can be
characterized by dlicing trees. A dlicing tree defines a hi-
erarchy of cuts needed for recursively partitioning a rect-
angular block into patterns consisting of smaller blocks.
The simplest kind of dicing trees are binary slicing trees,
which represent guillotineable or slicing patterns. Accord-
ing to Stockmeyer [24], a pattern is dlicing, if it is either

abasic block, i.e., an indivisible item, or if thereisaline
segment (a dice) that divides the enclosing rectangle into
two pieces such that each of the piecesisdlicing. Figure 3
presents a slicing pattern and a corresponding slicing tree.
The inner nodes of the tree are labeled with the cut direc-
tions (vertical, horizontal), and the leaves characterize the
basic blocks. There is aso a bottom-up interpretation of
dicing trees. In this case, the label of an inner node de-
fines the relative arrangement (side by side, or one upon
the other) of the patterns represented by its subtrees.

B. Soring different implementations in shape functions

Shape functions have been introduced by Otten [5] for
VLSl layout generation dealing with flexible cells. The
flexibility originates from the fact that a cell hierarchically
comprises a set of subcells, which can be arranged in dif-
ferent ways. Figure 5 presents a shape function for a cell
containing four subcells. Three different arrangements of
these cells yield three minimal-area implementations for
the macro-cell. These can be represented in a shape func-
tion, which defines the admissible shapes, i.e., the relation
between area and aspect ratio. Note that a discrete shape
function is completely defined by its minimal area imple-
mentations.

In the facility layout problem there are no discrete mini-
mal implementations given. Only the area of afacility and
arange for the aspect ratio are specified. Thisinformation
defines a continuous shape function, which can be trans-
formed into a discrete shape function, as shown in Fig-
ure 6. Although some information is lost by this transfor-
mation, it keeps the computations during the optimization
process tractable.

When combining two flexible blocks, their shape func-
tions can be added to compute the shape function of the
aso flexible meta-block (pattern consisting of more than
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Fig. 5. The shape function for a macro-cell comprising four
subcells. The three possible subcell arrangementsthat yield
minimal-areaimplementations of the macro-cell are shown.
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Fig. 6. A transformation of a continuous shape function into
a discrete shape function with eight minimal implementa-
tions.

one block). If the orientations of the blocks are free, they
can be rotated by 90° before being placed on the layout
surface. Both possibilities can be considered in the shape
function of the resulting meta-block by labeling the mini-
mal implementations with the particular orientations. Fig-
ure 7 shows the composition of such a generalized shape
function for a meta-block consisting of two fixed-shape
blocks with free orientations. The relative arrangement
of the blocks is fixed, since they are placed upon each
other in al cases. Note that there is one implementation
which is dominated by another one: Combination (h, v)
with the lower block in horizontal (k) orientation and the
upper block in vertical (v) orientation is covered by com-
bination (h, h), since both have the same width, but the
latter is less high. In practice, most implementations are
dominated, and it is possible to store all nondominated im-
plementations without observing an exponential growth in
the number of combined implementations at each level in

(V,V/ m
(vh) - D

(hhy

width

Fig. 7. The generalized shape function for two fixed blocks
placed upon each other; each combination is labeled with
the orientations of the blocks, for instance, (h, v) meansthe
lower block isin horizontal and the upper block isin vertical
orientation
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the tree. Empirical results for this will be presented in a
later section of this article.

C. Iterative clustering based on connectivity

While dlicing trees and shape functions deal with the
packing aspect of the optimization problems, another
heuristic is necessary to take into account those constraints
based on connectivity. When constructing a solution for
these problems, care must be taken that highly connected
blocks are placed near each other on the layout site. Dur-
ing the composition of a slicing layout, blocks (or meta-
blocks) areiteratively paired. This corresponds to compos-
ing an inner node of the dicing tree by joining two leaves
(or subtrees).

At the beginning of the construction, globally good pair-
ings are identified in the set of al blocks. These build
the lowest level of the dlicing tree. A good technique for
successively pairing items according to a quality function
is the iterated matching heuristic, which was introduced
by Fritsch and Vornberger [6]. It is based on the graph-
algorithmic computation of a maximum weight matching
on a complete graph. The vertices of this graph represent
the items to be paired, and each edge is weighted with the
value of the quality function for the corresponding pairing.
A matching in this graph is a set of node-digunct edges,
and the weight of a matching is the sum of the weights of
al edgesin this set.

In the case of the facility layout problem, an edge is
weighted according to the flow between the facilities rep-
resented by the adjacent vertices. For the VLSI layout gen-
eration problem, the quality function is based on the num-
ber of terminals that have to be connected by signal nets
between both cells. A maximum weight matching corre-
sponds to a set of optimal pairings such that a globally
maximal number of terminals can be connected inside the
resulting meta-blocks. Since paired blocks are adjacent
on the final layout, the maximum weight matching ensures
short wiring lengths in the case of macro-cell layout gener-
ation and low partial flow-cost termsfor the facility layout
problem.

Inthe second iteration, the next level of thedlicing treeis
constructed by computing amaximum weight matching on
a graph whose vertices represent meta-blocks, each con-
sisting of two blocks. The quality function is based on the
sum of the flow between both sets of facilities contained
inside the corresponding meta-blocks for the facility lay-
out problem and on the number of terminals that have to be
connected between the cellsin both sets for the macro-cell
layout generation. The process is iterated until the slicing
tree is completed by joining the last two meta-blocks at
the root (see Figure 8). If the matching at one level is not



Matching graph in 1st iteration: U D

2nd iteration:

1st iteration: H

Fig. 8. The construction of a dlicing tree using the iterated
matching heuristic, e.g., in the second iteration, when the
second inner tree level is constructed, the meta-blocks adja-
cent to the bold edges are combined because the weight of
the corresponding matching (80+90) is larger than those of
the other two possible matchings (60+85 and 80+85) in that

graph.

perfect, that is, not al vertices are adjacent to edges of the
matching set, the corresponding blocks or meta-blocks are
kept and added to the set of meta-blocks to be matched in
the next iteration.

IV. GENETIC ALGORITHMS WITH TREE-STRUCTURED
GENOTY PE REPRESENTATION

This section describes the main features of our hy-
brid genetic algorithms for the two constrained placement
problems. The implementations of these algorithms em-
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ploy a dlicing-tree representation and include shape func-
tions and iterated matching to address multiple design ob-
jectives simultaneously. At the end of this section, the hy-
brid genetic algorithms for the two applications are out-
lined.

A. The genotype

The phenotypic representation for the placement prob-
lems is basically the pattern that describes the geometric
layout, i.e., shapes and positions of the blocks. In the case
of VLSI layout generation, if the computation of the global
routesfor the signal netsisintegrated into placement, char-
acterization of the routes is aso part of the phenotype.
Binary dlicing trees are well suited to represent packing
or placement patterns and have already been used in ge-
netic algorithms for two-dimensional problems [19], [20],
[14], [13], [25], [11]. The genotype encoding in these ap-
proaches is a post- or prefix string defining the structure
of the tree and its node labels. During recombination, par-
tial arrangements of blocks are transmitted from parents
to offspring. The corresponding operation is the inheri-
tance of subtrees from the parents. Encoding the tree in
a string complicates this operation, since the string needs
to be decoded into the dlicing tree to execute the recombi-
nation, then recoded into an offspring chromosome after-
wards. There is no reason for using a string encoding ex-
cept for the anal ogy to the natural evolution process, where
the genetic information isencoded in a DNA string. When
directly using the dlicing tree as the genotype representa
tion, further decoding or encoding the tree when applying
genetic operators is avoided.

The use of trees for genotype coding is aready well
known from GP [26]. However, in GP the size of the
individuals in a population is greatly varied, and usualy
no restrictions exist regarding the structure of the trees.
Trees representing layouts differ from those used in GPin
one main point: al trees must have a fixed size, because
they have exactly the same set of leaves (objects to place).
Therefore, the application of the genetic operators is more
complicated than in GP. Prablem-specific operators must
be used to ensure that only correct offspring are generated.

In the following examples, as for the remainder of this
article, blocks or subpatterns in a tree defining a layout
or packing pattern are always stacked vertically upon each
other. The pattern characterized by the right successor of
aninner tree nodeis always positioned on top of the pattern
characterized by its left successor when combining both
parts into a pattern or meta-block. Placing these parts next
to each other is considered in the next level of the tree by
taking into account the rotated variant of this meta-block.



exchange leaf A
with subtree B

Fig. 9. Mutation by exchanging subtrees. Here asingle leaf A
is exchanged with a three-node subtree B.

B. Mutation

In our approach, three different mutation operators tai-
lored to handle tree-structured genotypes are used. There
are two straightforward mutation operators that change the
structure of atree. Figure 9 shows an example for the oper-
ator which exchanges two parts of atree. Part A isasingle
leaf, while B is a subtree containing three nodes. At the
phenotypic level, this corresponds to exchanging the block
represented by leaf A with the placement or pattern for the
set of blocks characterized by subtree B.

é%\

insert subtree A
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Fig. 10. Mutation by changingthe structureof thetree. A single
leaf A iscut andinserted at adifferent position z inthetree.

The second mutation operator (Figure 10) extracts apart
of thetree (leaf A) and insertsit at adifferent position (x).
This corresponds to cutting ablock or a partia placement
out of the complete packing pattern and moving it to a dif-
ferent position. Note that this transformation cannot be
performed by the operators which simply exchange leaves
or subtrees, so this is an essential mutation operator for a
genetic algorithm using tree-structured genotype represen-
tation.

A third mutation operator does not directly change the
structure of the tree. It converts the pattern described by

the dlicing tree by changing the orientation of one of the
blocks or meta-blocks inside a subpattern characterized by
an inner node of the tree. Thisoperator isonly necessary if
no generalized shape functions are used to encode al pos-
sible orientations for the blocks and meta-blocks contained
inaparticular pattern.

C. Gene-pool recombination

The recombination operator in genetic algorithms is
usually asexua operator, which constructs one or two off-
spring out of the genetic information encoded in two par-
ent individuals. One obvious way for the creation of one
offspring out of two tree-structured individuals is to com-
bine digoint subtrees of both parents into a tree for the
offspring. Such a straightforward recombination operator
can be implemented by selecting subtrees from both par-
ents to form a pool of building blocks out of which a new
individual is composed. Leaves that are not contained in
these subtrees are additionally inserted into this pool. Dur-
ing offspring creation, these subtrees are combined to a
complete tree. Here, iterated matching can be used again
to identify good pairs of subtrees with regard to their con-
nectivity.

Two-parent or sexua recombination is inspired by the
natural evolution process and is the main form of recom-
bination used in artificial evolution. However, multipar-
ent recombination operators have been introduced too.
Bersini and Seront [27] used three parents, similar to
Muhlenbein’s mgjority vote [28], and Eiben et al. [29] use
up to ten parents. In the field of evolution strategies, mul-
tiparent recombination has also been introduced as ‘ global
recombination’ [30], [31]. The extended recombination
scheme used in our hybrid genetic agorithms is called
gene-pool recombination, in reference to the concept es-
tablished by Muhlenbein and Voigt [32].

In gene-pool recombination, all genetic information
from a given set of parents is inserted into the pool, out
of which the offspring are created. In our approach, the
genetic information encoded in an individual defines the
relative positions of the blocks and is represented in the
structure the corresponding binary tree. Due to the hier-
archical organization of the tree, parts of this information
are encoded in each of its subtrees. Thus, every subtree of
each parent individual isinserted into the pool. (In the ac-
tual implementation the pool does not contain copies of al
subtrees, but only pointers to the particular inner nodes of
the parent trees). Note that a small subtree occurs more
than once in this pool, since it is contained in a set of
larger subtrees. Because offspring creation is done by ran-
domly choosing disjoint subtrees out of the pool, this small
subtree has a higher chance of being selected. If a small



subtree is already included in more than one of the par-
ent individuas, there will be even more copies of it in the
pool. This ideally corresponds to the building block hy-
pothesis [33]. These building blocks are short, low-order,
and highly-fit schemata that are sampled, recombined, and
resampled during the search. Like those building blocks,
smaller trees have a higher chance of being contained in
one or more of the offspring that are created out of the ge-
netic materia in the pool.

D. Sdection and replacement

For choosing individuals as parents for recombination,
the fitter individuals have a higher chance of being se-
lected. For mutation, any individual in the population has
an equal probability of being chosen; the operator used to
generate the offspring is selected randomly from the set of
possible mutation operators. An offspring is created either
by recombination or mutation. A steady-state genetic al-
gorithm is used; thus, anindividual may survive for longer
than one generation. At the end of each generation, indi-
viduals are replaced if the quality of offspring is higher,
or if they are quite different from all the members of the
current population. The benefit of specialized replacement
schemes to maintain diversity in the population has already
been investigated by De Jong [34], Goldberg and Richard-
son [35], and Whitley [36]. More recently, Freisleben
and Merz used such a technique for solving the traveling
salesman problem [37] and the quadratic assignment prob-
lem [38]. In their approaches, the number of noncommon
edges in tours or the number of items assigned to different
bins, respectively, istaken as a difference measure for two
individuals.

The difference between two individuals representing
placement patterns is computed at the genotypic level and
measured by the number of subtrees that do not contain
the same set of leaves. Although this measure does not
take into consideration the structure of trees nor the orien-
tations of blocks, it is efficient to compute and serves as a
rough measure of diversity.

An offspring is aways inserted into the population if its
fitness is better than the fitness of the best individual. In
this case, the individual with worst fitness is replaced. If
an offspring is not better than the best individual, then the
individual in the current population that is most similar to
this offspring is identified. If their difference is below a
given threshold, indicating that they encode similar solu-
tions, then the better of the two is kept in the population.
If the offspring is disparate from all individuals, it is con-
sidered to encode a significant amount of new genetic in-
formation and enters the population by replacing the least
fit individual, without consideration of its fitness.

1. Bottom-up construction of the tree:

— Pair blocks based on maximum weight matching

— Consider al possible shapes and orientations in gen-
eralized shape functions

2. For all implementations in root node:

— Compute in top-down traversal the orientations and
shapes for all facilities

— Transform tree into a geometrical layout, determine
positions of the centroids of the facilities, and compute
flow costs for this implementation

3. Take minimal flow costs as fitness value

Fig. 11. The operations needed for construction of a single
individual in the hybrid genetic algorithm for the facility
layout problem. After mutation or recombination step 1 is
only executed for al levelsin the tree higher than the level
where a change occurred.

E. The hybrid genetic algorithm for the facility layout
problem

Figure 11 describes the operations which are executed
during the computation of asingleindividual in the hybrid
genetic algorithm for the facility layout problem. The dlic-
ing tree of an individual is constructed from the bottom-up.
All facilities are paired by using iterated matching based
on the flow between two facilities or the sum of the flows
between facilities comprised in a meta-block, as described
in section 111-C. Generalized shape functions are used to
store all possible implementations for a meta-block based
on different orientations of the combined blocks. Thus,
a single individual encodes several layouts with different
shapes, represented by different implementations stored in
the root of the tree. The orientations and shapes of meta-
blocks and facilities for each implementation are deter-
mined by top-down traversal, and the flow costs for the
particular layout are computed. The minimal flow costs of
al stored implementations are taken as the fitness of the
individual.

Since al possible orientations for the blocks are con-
sidered by the generalized shape functions, only the two
mutation operators that exchange nodes or change the tree
structure are used. After application of a genetic operator,
the shape functions are recomputed only for those inner
nodes located at higher tree levels than those nodes where
amutation occurred.

F. The hybrid genetic algorithmfor macro-cell layout gen-
eration

In the hybrid genetic algorithm for the layout generation
problem, standard shape functions are used. When two



1. Bottom-up construction of the tree:

— Pair cells based on number of common nets

— Fix orientations for cells

— Compute shape functions for flexible meta-blocks
— Add estimated routing space

2. Choose layout with minimal area of circumscrib-
ing rectangle

3. Top-down traversal for sizing flexible cells

4, Compute routing:

— Transform tree into routing graph

— Compute global routes

— Determine and add routing area

5. Bottom-up traversal to update total layout area

Fig. 12. The operations needed for a construction of a single
individual in the hybrid genetic algorithm for macro-cell
layout generation.

blocks are joined to form a meta-block, their orientations
are fixed. Thisis necessary since the channel between the
blocks has been augmented with an estimated amount of
routing space, which depends on the positions of the ter-
minals on both blocks and thus, their orientations. Be-
fore fixing the orientations, all 16 possible combinations
of the blocks relative to each other are checked to identify
an arrangement with amaximal number of terminals to be
connected on the adjacent sides of both blocks or partia
layouts. All nondominated implementations for the flex-
ible meta-blocks are stored in their shape functions. Af-
ter completion of the tree, the layout with minimal area
is identified, the flexible cells are sized, and the tree is
transformed into a geometrical layout. For this geomet-
rical layout, the shortest paths between the terminals to be
connected by signal nets are determined. At this point,
the number of nets in each channédl is known, the channel
widths are adapted, and the final positions of the cells on
thelayout are fixed. Details on the computation of the rout-
ing in our work can be found in [39]. Figure 12 provides
an outline of the computation steps during the construction
of anindividual.

The main advantage of this approach, in comparison to
other common approaches, is that the computation of the
global routes for the signal netsis fully integrated into the
placement process. The positions of the cells are not fixed
until al routes have been determined. Furthermore, al
shapes for the flexible cells are stored, and the globally
optimal shapes are identified.

TABLE
THE BENCHMARK CIRCUITS FOR THE MACRO-CELL LAYOUT
GENERATION PROBLEM

‘ ‘ zreroxf ‘ Terox ‘ ami33 ‘ ami49 ‘

#cells 10 10 33 49
# nets 203 203 123 408
#terminals 698 698 452 958
#terminals/net 3.43 343 3.67 2.35
#1/0 terminals 2 2 42 22
# shapes/cell 6.2 1 1 1
cell area [mm?] | 19.4 19.4 | 1.16 35.1
V. RESULTS

In this section the hybrid genetic algorithms are applied
to different benchmark problems, and the results are com-
pared to results published for other techniques.

A. VLS macro-cell layout generation

The hybrid genetic algorithm for the layout generation
problem was tested on red-life circuits chosen from a
benchmark suite that was released for design workshops
in the early 90s and is often referenced in the literature
as the MCNC benchmarks. They were originally main-
tained by North Carolina’s Microelectronics, Computing
and Networking Center, but are now located at the CAD
Benchmarking Laboratory (CBL) at North Carolina State
University. These benchmarks are standard problems in
macro-cell layout, and the characteristics of the circuits
areshownin Tablel.

Unless otherwise stated, all results of our hybrid ge-
netic algorithm presented in this section were obtained us-
ing a parallel implementation based on the stepping stone
model. Several subpopulations each consisting of ten in-
dividuals are processed in parallel with periodic migration
of individuals between them. In addition to this, differ-
ent strategies are pursued by the subpopulations, which are
dynamically adapted during the search [40]. These strate-
gies differ in the frequency used for the particular muta-
tion operators, in the ratio of mutation to recombination
for offspring creation, and in the use of the iterated match-
ing during recombination.

When pairing blocks randomly for VL SI-layout gener-
ation, cells are spread arbitrarily with regard to their con-
nectivity on the layouts generated during the search. It-
erated matching can be used to enforce highly connected
cells to be placed close together. Although computing the
matching in a complete graph as we implemented it has
cubic runtime, the overhead can be neglected for graphs
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Fig. 13. Progresswith respect to the use of theiterated matching
heuristic during recombination for VLSI macro-cell layout
generation. The average fithess based on ten runsis shown
for each case, all parameters were the same, only the re-
combination operator was changed.

with less than 100 nodes, and the number of meta-blocks
to match during recombination is usually much smaller
than the number of cells. Figure 13 presents the perfor-
mance of runs with and without use of iterated matching
during recombination. All curves are averages based on
ten runs with 16 subpopulations using the same parame-
ters. To avoid side effects (for example compensation of
inefficient recombination by increasing the mutation rate),
no strategy adaptation has been used. While the use of
iterated matching for combining subtrees during recom-
bination is useful when generating a layout for ami49, it
|eads to premature convergence when dealing with am33.
A possible explanation for this effect is the deterministic
character of the matching heuristic. Especially in combi-
nation with gene-pool recombination, when inserting the
subtrees of the top 50% of all individuals into the pool,
iterated matching tends to pair the randomly chosen sub-
trees in a similar manner. To overcome this problem and
still take advantage of the beneficial effect for larger prob-
lems, in the full version of the hybrid genetic algorithm
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used to obtain the final results, the use of iterated match-
ing during recombination is adapted based on the progress
of the evolution [40].

TABLEII
THE LAYOUT AREAS [MM?] FOR THE VLS| BENCHMARK
CIRCUITS (AVERAGE OF 30 RUNS FOR OUR RESULTS)

‘ ‘ zeroxf ‘ Terox ‘ ami33 ‘ ami49 ‘

MBP[41] — 25.79 | 242 —

TimberWolf [42] — — 2.57 —
BB [43] — 26.17 | 224 | 51.49

SAGA [23] — 27.55 — —
FRODO [44] 2941 | 31.13 | 3.37 | 60.02
CAR [44] 26.08 | 28.71 | 264 | 56.40
Hybrid Best | 27.34 | 27.77 | 277 | 53.49
GA Avg 2772 | 2925 | 292 | 56.74
o 0.19 0.47 0.07 1.04

Table Il presents the sizes of layouts generated by the
hybrid genetic algorithm for the benchmark circuits based
on 30 runs for each problem. All runs were done on a net-
work of 16 Motorola MPC 601 processors with a subpop-
ulation of 10 individuals on each processor. The compu-
tation times for the largest problems were 34 minutes for
ami33 and 85 minutes for ami49 by running the genetic
agorithm for 1800 and 2700 generations, i.e., 288,000 and
432,000 evaluations, respectively. For comparison some
previously published results for this benchmark set are
listed. The best results are reported by Onoderaet al. [43].
They use abranch & bound method to place the cells. This
approach only scales up to placing six cells, and for larger
instances the layout must be composed hierarchicaly. In
particular, for circuit ami49, two levels of hierarchy are
needed. TimberWolf by Swartz and Sechen [42] and MBP
by Upton et al. [41] are based on simulated annealing.
SAGA by Esbensen and Mazumder [23] is a mixture of
a genetic algorithm and simulated annealing. It starts as
a genetic algorithm and gradually switches to a simulated
annealing process by reducing population size and increas-
ing the mutation rate. Their approach is limited to smaller
circuits containing fixed cells. FRODO is a floorplanning
tool, based on the work of Lengauer and Muller [45]. The
reported results are from the thesis of Pape [44], who uses
the placements generated by FRODO as an input to his
tool CAR, which refines and topologically compacts the
layout.

Although the same set of benchmark circuits was treated
in the previoudy mentioned approaches, the comparison



Fig. 14. A layout for circuit ami49, area= 55.65mm?>

is complicated. The results of TimberWolf have been
achieved by combining several tools. BB only deter-
mines a placement and estimates the routing space, the
presented results have been obtained by using other (com-
mercia) tools for routing and compaction after placement.
SAGA and FRODO do only floorplanning, and CAR starts
its work with a given placement that has been generated
by FRODO. There is always a strict distinction between
placement and routing in all these approaches. An inte-
gration of the routing into the placement processin VLS
design is desirable, since the accuracy of the routing space
estimate determines the accuracy for the assessment of a
particular placement. Overestimates can lead to subopti-
mal layouts, in the case of underestimates the cells have
to be rearranged to obtain a routable placement. The hy-
brid genetic algorithm proposed in this article fully inte-
grates the computation of the global routing into the place-
ment. The presented results are obtained exclusively by
the use of this algorithm. From the results of the other
approaches only those of SAGA and FRODO are directly
comparable to our approach, since in these cases, no de-
tailed routing has been done. Theroutability of our layouts
has been checked by atool developed at the University of
Osnabriick, which also produced the detailed routing for
the layout presented in Figure 14. Incorporating a better
technique for detailed routing or compacting the final lay-
out after routing, like the other approaches have done, will
certainly produce better results. Alternatively, a sophisti-
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cated heuristic could be included to determine the demand
of routing space inside the channels more accurately. At
the moment, an upper bound of routing space isinserted by
adding one track for each net in a channel. Nevertheless,
even with this simple heuristic our best results are nearly
competitive with those presented by the other approaches
using specialized tools for each stage of the layout gener-
ation process.

B. Thefacility layout problem

The implementation of the hybrid genetic algorithm for
thefacility layout problem has been tested on a set of eight
instances proposed by Tam and Li [10]. These instances
are named TL91-X in the following with X representing
the number of facilities to place. The areas of the facilities
are quite different, for instance in TL91-30 the sizes of the
30 facilities vary between 3 and 36 (avg. 11.9, 0=8.4). A
measure for the complexity of the problem with regard to
the connectivity is the flow dominance, defined as the co-
efficient of variation for the entries in the flow matrix [46].
For the problemsin the benchmark set, the flow dominance
is between 100 and 130, which means that they do not
cover a broad range of problems regarding this measure.
However, this is a well-known benchmark set, and results
for different approaches have been published, which pro-
vides agood basis for comparison.

TABLE I
THE NUMBER OF IMPLEMENTATIONS STORED IN THE ROOT
NODE OF A SINGLE INDIVIDUAL AND THE AVERAGE
COMPUTATION TIME (SUN ULTRA1/140) TO GENERATE AN
INDIVIDUAL OF THE INITIAL POPULATION (INIT) AND
DURING THE SEARCH (OPT), AVERAGE OF 1000 VALUES IN

EACH CASE
#shapes _tir_ne [ms]

init opt
TL91-5 42.0 51 4.6
TL91-6 47.0 6.4 7.0
TL91-7 58.9 98| 104
TL91-8 o 114 | 120
TL91-12 163.3 298| 339
TL91-15 142.9 428 | 431
TL91-20 183.7 70.3| 85.2
TL91-30 251.8 169.3 | 210.8

The continuous shape functions for the facilities were
transformed to discrete shape functions with 10 implemen-
tations for each facility. Combining two of these facilities
and considering all possible orientations for both, there
are 4 - 10 - 10 combinations to consider for the resulting
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TABLE IV
THE OBTAINED FLOW COSTS FOR THE FACILITY LAYOUT PROBLEM (AVERAGE OF 30 RUNS), COMPARED TO PREVIOUSLY
PUBLISHED RESULTS

| [ TLO15 [ TL916 | TLOL—7 | TL91-8] TLO1-12] TLO1-15] TLO1-20] TL91-30]

Tam and Li [10] 247 514 559 839 3162 5862 — —
Kado et al. [13] 228 362 559 839 3162 5862 16535 42814
Garces-Perez et al. [14] 226 384 568 878 3220 7510 14033 39018
Best 214 327 629 833 3164 6813 13190 35358
Hybrid GA Avg 214 336 644 886 3203 7004 14333 36984
o 0.0 8.6 17.5 9.4 17.0 205.5 367.5 850.8

meta-block. Continuing this computation when construct-
ing the tree representing a complete layout, one might ex-
pect an exponential growth for the number of implementa-
tions stored in each level of the tree. As shown in section
I11-B, some implementations are covered by others when
constructing ashape function. Table I11 showsthat the vast
majority of combinations are redundant, since, even when
combining 30 flexible facilities, there exist on average only
251.8 implementations, which are stored in the root node
of the tree representing an individual. In the table timing
data is also given, which shows the scalability of this ap-
proach. The difference between the time to generate an
initial individual and the time needed to generate an off-
spring during the optimization is caused by the overhead
to set up the gene pool for recombination.

In Table 1V, the results for the facility layout problem
are shown, averaged over 30 runs. For this benchmark set,
aspecial objective function, 0.5-3- - ; dfj -m;j, 1S used for
the flow costs of a placement to increase the influence of
the distances between facilities. Four subpopulations were
used, the size of each was 10, resulting in a total popu-
lation size of 40. During recombination, the subtrees of
the top 50% of al individuals in each subpopulation were
inserted into the gene-pool. The number of generations de-
pended on the problem size: the genetic algorithm wasrun
for 1000 generations for problems with less than 10 facil-
ities, 2000 generations for mid-range problems, and 3000
generations for 20 and 30 facilities. Thisresulted in acom-
putation time of 40 and 100 minutes for the two largest
problems on a network of four Sparc Ultra/140 worksta-
tions for 120,000 evaluations in either case.

Table 1V also includes the best results reported by Tam
and Li [10], Kado et al. [13], and Garces-Perez et al. [14]
for comparison. Although Tam and Li originally proposed
these instances, they do not present final results for prob-
lems TL91-20 and TL91-30, due to difficulties with the
scalability of their approach. Kado et al. [13] implemented

a set of genetic algorithms based on a dicing-tree repre-
sentation. They were able to obtain better results for the
two smallest problems and were the first group to present
results for the problems with 20 and 30 facilities. Garces-
Perez et al. [14] use GP and report better resultsfor the last
two problems, whereas the performance for the smaller
problems varies. Our approach outperforms the other ap-
proaches for the two largest problems, and the flow costs
of the best layout for the instance with 30 facilities pro-
duced by our hybrid genetic algorithm are 10% and 20%
smaller than the results presented by Garces-Perez et al.
[14] and Kado et al. [13], respectively. Their approaches
size the facilities after fixing arelative placement and use
a continuous representation. While this provides better so-
[utions for smaller problem instances, where our approach
ended up with less optimal solutions, considering differ-
ent shapes in discrete shape functions payed off for the
larger problems. From a practical point of view, if better
performance for smaller instances is demanded, a refined
discretization of the shape functions (i.e. make use of more
than ten shapes per block), or even arefinement of the best
layout after evaluating atree should provide better results.
However, our goa during the implementation of the hy-
brid genetic algorithm was to achieve better results for the
larger problem instances within a practicable timeframe,
since thisis a more demanding task.

V1. CONCLUSIONS

Hybrid approaches to two significant combinatorial
placement problems have been presented. These are ge-
netic algorithms with nonstandard genotypic representa-
tion and specific genetic operators. During the construc-
tion of individuals, several problem-specific heuristics ad-
dress the different objectives and constraints. While the
application of the dlicing-tree representation and the con-
cept of generalized shape functions deal with the packing
aspects, connectivity is considered by using the iterated



matching heuristic. As a result, the hybrid genetic algo-
rithms are able to take all constraints into consideration
during optimization.

For the generation of VLS| macro-cell layouts, an ap-
proach has been introduced that fully integrates the com-
putation of the global routes and the sizing of the flexible
cellsinto the placement task. It is more scalable than most
other approaches and can be further improved by incor-
porating a better heuristic to estimate the area needed to
compl ete the detailed routing of signal nets.

In the case of the facility layout problem, the hybrid
approach shows much better scalability than several ap-
proaches using the same benchmark set. The instances in
this set represent a generic problem type of this domain,
which includes various design applications. The proposed
approach can certainly be extended to consider shape con-
straints for the site the facilities have to be placed on and to
solve problems containing preoccupied areas. It can also
be extended to deal with office or production-hall layout
problems where passages are needed between the placed
facilities, similar to the routing areain VLSI layouts.

The main feature of the approach introduced here, in
comparison with other approaches, isthe manner in which
block flexihility is treated: During the iterative composi-
tion of a placement, several implementations (shapes and
orientations) for blocks and meta-blocks are stored. This
process can be described as a kind of ‘implicit hillclimb-
ing’. Common hillclimbers in genetic agorithms for com-
binatorial optimization problems randomly explore solu-
tions neighboring the candidate solution encoded in the
current individual and accept those with better fitness. In
hybrid approaches, local search techniques explore the so-
lution space close to the sample points by applying special-
ized heuristics. When including problem-specific knowl-
edge during creation of individuals, like in our approach, it
is possible to identify unfavorable or redundant partial so-
lutions and consider only the most promising ones. There-
fore, each individual in our hybrid genetic algorithms en-
codes a set of high-quality solutions, the best of whichisa
local optimum.
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