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Abstract

The combinatorial optimization problem considered in this paper is a special two dimen�
sional cutting stock problem arising in the wood� metal and glass industry� Given a demand
of non oriented small rectangles and a theoretically in�nite set of large stock rectangles of
given lengths and widths� the aim is to generate layouts with minimal waste� specifying how
to cut the demand out of the stock rectangles� Special restrictions are chosen with respect to
the production conditions of the �at glass industry� An iterative algorithm for solving this
problem heuristically is developed� By a maximum weight matching suitable rectangles are
matched in every iteration step and the matched pairs are considered as new� so called meta
rectangles� These meta rectangles can be treated in the same way as ordinary rectangles�
Furthermore� by the use of shape functions the orientations of the demand rectangles are not
�xed until the layout has been computed� The algorithm� programmed in C� has been tested
with several instances� containing between �� and ��� rectangles� taken from real demands
of a glass factory� The resulting layouts� calculated within a few minutes 	on a PC�
����
have an average waste of less than � percent�

� Introduction

Because of the increasing costs of raw material and the need to avoid industrial waste	 solving
cutting stock problems became of great interest in the area of operations research� Cutting
stock problems belong to the class of combinatorial optimization problems	 so a solution among
all possible solutions has to be found	 which optimizes a criterion function subject to a set of
constraints� Unfortunately the size of the solution space containing all feasible solutions in general
is enormous� As a consequence an exhaustive search within the whole solution space is impractical






and sophisticated heuristics which ensure the calculation of reasonable solutions within limited
time are required�

The combinatorial optimization problem considered in this paper is a special two dimensional
cutting stock problem arising in the wood	 metal and glass industry� Given a demand of small
rectangles and a set of large stock rectangles	 layouts have to be found which specify how to cut
the demand out of the stock rectangles with minimal waste�

Gilmore and Gomory used linear programming to solve such kind of a problem exactly �Gil 
��
�
�Gil 
��
�� Their suggestions were improved by Herz �Her 
����� Branch�Bound and tree search
algorithms were developed by Cani �Can 
���� and Whitlock � Christo�des �Whi 
����� These
algorithms fail if more than �� rectangles have to be packed� Most of the heuristic algorithms
for generating layouts are based on a greedy strategy� After sorting the demand rectangles they
are placed in the stock rectangles and none of them can be repositioned� Level oriented packing
algorithms were developed by Co�man	 Garey	 Johnson and Trajan �Cof 
����� These algorithms
are fast	 but the performance bounds are not good enough to stand the requirements of the
industry �Cof 
���� �Gar 
��
��

A weakness of the most known algorithms is that at the beginning of the algorithm the alignments
of all rectangles that have to be packed are �xed� In many domains	 especially in the �at glass
industry	 a �xing of the alignment is unnecessary and it only leads to the fact	 that some layouts
with probably minimal waste are not considered� Furthermore	 the most algorithms are unable
to pack a high number of demand rectangles as dense as it is necessary for the �at glass industry�
Therefore	 an algorithm is needed which is able to handle a set of many rectangles �up to ����
and which takes every possible and suitable layout in consideration�

In the second section of this paper a detailed description of the considered problem is given and
the solution strategy is presented� Since shape functions are used for solving the problem	 an
introduction to this theme is given in section three� The fourth section deals with slicing trees� In
the �fth section the maximum weight matching problem is described� The developed algorithm
consists of four stages which are described in section six� Computational results are given in
section seven�

� The Two Dimensional Cutting Stock Problem

The problem considered in this paper can be formulated as follows�

Given a �nite number n of demand rectangles of length li and width wi and a theoret�
ically in�nite set of stock rectangles fR�� R�� � � �g of a given length and width� Find
layouts for cutting all demand out of the stock rectangles so that the minimumnumber
of stock rectangles is required� Only guillotine cuts are permitted� A rotation of the
demand rectangles of ��� is allowed�

The above constraints are chosen with respect to the production conditions in the �at glass
industry� A ��� rotation of the rectangles is possible because glass is an isotropic material that
means that it has the same structure in every dimension� Only guillotine cuts are permitted means
that the cuts must go from one edge of a rectangle to the opposite edge in a straight line� This
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constraint is crucial	 because most factories in the glass industry use a cutting machine which can
only carry out these cuts� It is assumed that the stock rectangle is large enough	 so that every
demand rectangle �ts in the stock rectangle in at least one orientation� Without loss of generality
it is assumed that the lengths and widths of all rectangles are integer�

There are two more restrictions concerning the practicability of cutting in the glass industry� the
construction of traverses and the observance of cut distances� For cutting the demand rectangles
out of the stock rectangles the latter are placed on a cutting table� There a carriage with a
diamond placed at the bottom of it slices the glass sheet in x� and y�dimension� Since the big
glass sheets are even worse to handle �the typical extensions are up to six meters in length and
three meters in width� the �rst cuts that have to be made are in y�direction and go directly from
one point of the longer side of the sheet to the opposite side� They divide the stock rectangle into
some sections� We call these cuts traverse cuts and the resulting sections of the stock rectangles
are called traverses� Notice that the traverse cuts are also guillotine cuts� The x�dimensions of the
traverses should not exceed a given value� For example	 a typical bound of the traverse lengths is
���� mm if a stock sheet of ���� mm length is used� Since the maximal traverse length depends
on the dimensions of the used stock and that of the used cutting table	 this value should be
given together with the other parameters of an instance like the dimensions of stock and demand
rectangles�

A nice property of the slicing of glass is that no sawdust arise as it does by the cutting of wood�
But it is crucial to take care of the distances between the cuts� The cutting of glass is done by
slicing the stu� and then breaking it along the slice� If two slices are too close	 the glass can not
be broken� The minimal distance between two cuts is the double sheet thickness	 but for a glass
sheet of � mm thickness the typical value of �� mm is chosen� Also this value should be given in
the instance� Figure 
 shows how a stock rectangle can be sliced into the demand rectangles� The
numbers give information about a possible sequence of the cuts� The �rst two cuts are traverse
cuts which divide the glass sheet into three traverses�
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Figure 
� Possible guillotine cuts in a layout

For solving the given two dimensional cutting stock problem of the �at glass industry an iterative
algorithm is developed based on the following idea� In every iteration step some rectangles are
paired by a maximum weight matching and the matched pairs are considered as new	 larger
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rectangles	 so called meta rectangles� In the following iteration steps these meta rectangles are
treated in the same way as ordinary rectangles� The iterative matching automatically takes care
of the guillotine structure� The iteration stops if the constructed meta rectangles are traverses�
These traverses will be assigned to the stock sheets by a �rst �t decreasing algorithm� In every
iteration step all possible alignments of demand and meta rectangles are considered by making
use of shape functions�

� Shape Functions

A meta rectangle has several layouts according to the orientation of the horizontal or vertical cut
which is used to split the meta rectangle into the two buddies it resulted from� The layout also
depends on the alignments of the demand rectangles the meta rectangle contains� The alignments
of the demand rectangles are not �xed at any time the algorithm proceeds� For example	 if we
match two demand rectangles A and B the resulting meta rectangle AB has eight essentially
di�erent layouts� A lies above or left from B and both rectangles can be rotated� Figure � shows
the eight essentially di�erent layouts for a meta rectangle consisting of two demand rectangles�

Figure �� Layouts for a meta rectangle with two demand rectangles

A single layout of a meta rectangle is represented by a slicing instruction� This is a four dimensional
vector �x� y� o� p�	 where x and y are the length and width of the meta rectangle in its considered
layout	 o � fh� vg is the orientation of the horizontal or vertical cut used to split it and p is the
point �according to o� where the cut starts�

To describe all possible layouts of a meta rectangle	 a shape function is used� Such functions are
known from �oorplanning problems �Sto 
����	 �Ott 
����� A shape function sR for a rectangle R
can be considered as a decreasing	 piecewise linear function� The interpretation is that sR�w� is
an upper bound on the length of a �meta� rectangle that has the width w� So	 if a meta rectangle
has been computed which contains a set of demand rectangles and if the dimensions of the stock
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rectangle are known	 the maximal needed x�dimension for a layout of the meta rectangle can be
found subject to the given width of the stock rectangle�
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Figure �� Shape function of a demand rectangle

A shape function is considered as a list of slicing instructions� The shape function of a demand
rectangle of length l and width w � l consists of two slicing instructions ��l� w� h� ��� �w� l� h� ����
The cut orientation and its starting point is of no use here	 but later we will need this information
for the cutting of meta rectangles unequal to demand rectangles� In Figure � an example of a
shape function for a demand rectangle is given�

The shape function of a meta rectangle is calculated by the shape functions of the two demand or
meta rectangles it consists of	 with the help of the composition procedure� Let f� and f� be two
shape functions and si � �xi� yi� oi� pi� a slicing instruction of fi �i � 
� ��� The composed slicing
instruction for a horizontal resp� vertical cut is�

� horizontal cut� comp�hor� s�� s�� �� �max�x�� x��� y� � y�� h�min�y�� y���

� vertical cut� comp�ver� s�� s�� �� �x� � x��max�y�� y��� v�min�x�� x���

By composing all slicing instructions of f� with those of f�	 two shape functions fhor and fver are
computed which contain all possible horizontal resp� vertical slicing instructions� Figure � shows
a horizontal and vertical shape function	 resulting from the composition of the shape functions of
two demand rectangles� Three slicing instructions per cut orientation are found� This leads to the
fact that a layout of the resulting meta rectangle is not included in the list of slicing instructions	
if another layout of the same width but a smaller length or the same length but a smaller width
exists� Hence	 only feasible slicing instructions are stored in the shape function� For example	
layout three and four in the upper row and layouts one and two in the lower row of Figure � are
treated in this way�
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Figure �� Shape functions with given cut orientation

To calculate a single shape function f for a
meta rectangle	 we take the minimum about
fhor and fver by merging this two functions
and deleting the dominated slicing instruc�
tions� For example	 a slicing instruction of
fver is dominated by one of fhor	 if fhor�w� �
fver�w� for a given width w� If two slicing
instructions of fhor and fver have the same
width and the same length then we will de�
termine here	 that the horizontal cut is cho�
sen�
The maximal number of slicing instructions
that have to be stored in a shape function f
which is calculated by composing two other
shape functions f� and f� is ���jf�j�jf�j�
�	
where jfij denotes the number of slicing in�
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Figure �� Minimum shape function

structions in function fi �see �Mue 
��
���

Figure 
 shows the minimum shape function of the functions fhor and fver shown in Figure �� In
this example of calculating the minimum function	 no dominated slicing instructions have to be
deleted�

� Slicing Trees

To store the actual pairs in every iteration step we use binary slicing trees� Every leaf of a tree
represents a demand rectangle	 an interior node of a tree represents a meta rectangle� Two nodes
have the same father if the rectangles represented by these nodes are paired� In every node the
shape function of the corresponding meta rectangle is stored�
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A slicing tree is built bottom up� At the beginning of the algorithm all slicing trees consist of
only one node �the root� representing the demand rectangles� In every iteration step	 some of the
trees are combined by a common father	 which is the root of a new slicing tree representing the
new meta rectangle� The iteration stops	 if no more suitable pairs can be matched� A detailed
description of this stop criteria is given in section six� Since all nodes contain a shape function and
every shape function describes all possible layouts of a meta rectangle	 the slicing trees contain
an exponential number of possible layouts for the stock rectangles�

When the algorithm has ended	 we can detect how the demand rectangles should be cut out of the
stock rectangles� Therefore	 a tree is traversed in top down order� Since every node stores a shape
function we can detect how the �rst cut in the stock rectangle has to be made by considering the
shape function in the root of a tree and searching for the �rst slicing instruction whose y�value is
smaller or equal to the width of the stock rectangle� Due to the property of the shape functions
mentioned above	 we automatically get the slicing instruction which describes the layout with the
minimal length according to the made pairings� If the �rst cut has been carried out	 the stock
rectangle is split into two parts� The shape functions in the sons of the root describe how these
two parts e�ciently have to be split further� This proceeding is shown in Figure � by an example�
By the traversal of all slicing trees �one slicing tree for every layout� the demand rectangles can
be produced�
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Figure �� Layout and corresponding slicing tree

� Maximum Weight Matching

To �nd out in every iteration step	 which of the available rectangles have to be paired	 a maxi�
mum weight matching in a complete undirected weighted graph is used� The nodes of the graph
represent the available �meta� rectangles	 the edges represent the possible pairs and the weights
give information about the bene�t of a pair� The higher the weight	 the better the pair� The
weights are found by a so called bene�t function	 which evaluates the possible pairing of two rect�
angles by considering the corresponding shape functions� For example	 a possible bene�t function
for the pairing of two rectangles is to calculate the average waste of all possible layouts of the
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resulting meta rectangle and to subtract this value from 
��� This encourages the formation of
meta rectangles having many densely packed layouts� If all weights of the edges are calculated	
the maximum weight matching �nds the set of edges	 which maximizes the sum of all weights
under the constraint that no two edges are adjacent�

This problem can be formulated as a LP�problem as follows�

Maximize
nX

i�j��

ci�j � xi�j

subject to

nX

j��

xi�j � 
 for i � 
� � � � � n

xi�i � � for i � 
� � � � � n

xi�j � xj�i for i� j � 
� � � � � n

xi�j � f�� 
g for 
 � i � j � n

Here	 n is the number of available meta rectangles and c is the cost matrix� The value of xi�j is 

if the rectangles i and j are matched and xi�j � � if not�

Edmonds showed	 that the maximum weight matching problem can be solved in time O�n���
The algorithm used in this application was suggested by Gabow �Gab 
����� Figure � shows the
matching algorithm for seven rectangles in three iteration steps� The edges with zero bene�t are
not shown�
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� Iterated Matching

Up to now	 it has not been mentioned at which time the iteration stops and what a suitable pair
of rectangles is�

The stop criteria is chosen as follows� One restriction when cutting glass sheets is	 that the stock
rectangles must be split into traverses at the beginning of the cutting� the �rst cuts must be parallel
to the shorter side of the stock rectangle	 so that the stock rectangle is divided into sections with
the same width as and a smaller length than the original sheet� So the iterated matching stops if
meta rectangles have been generated with at least one layout in which they represent a traverse�
By computing such meta rectangles the problem of �nding the layouts for the stock rectangles is
reduced to a one dimensional bin packing problem� the traverses	 all of nearly the same width as
that of the stock rectangles	 have to be assigned to the latter in such a way	 that the stock sheets
are �lled nearly complete in length�

To �nd only suitable meta rectangles the algorithm has to take care of the further restrictions as it
is the bound of the traverse lengths	 the cut distances and the observance of the guillotine structure�
The last is preserved since the iterated matching automatically takes care of the guillotine structure
as seen above� To prevent cuts with distances of less than the given minimum	 slicing instructions
which do not ful�ll this subjection are not stored during the computation of shape functions� To
reduce the number of the slicing instructions of a shape function also those instructions are not
stored which have a x� or y�value bigger than the larger side of the stock rectangle� The bene�t
functions estimate a potential pair with zero value if the resulting meta rectangle does not have
a layout in which it �ts into the given traverse shape� All these observations are made in any
iteration step�

The developed algorithm consists of four stages� The �rst two stages are used to construct tra�
verses� In the third stage the traverses will be improved� The fourth stage is needed to align the
traverses to the stock rectangles�

In the �rst stage universal rectangles are calculated by an iterative use of the maximum weight
matching� To call a meta rectangle universal	 it must comply with two requirements� 
� The
average waste of all layouts of the meta rectangle must be smaller than �ve percent and �� There
must exist another meta rectangle	 so that the meta rectangle resulting from the pairing of these
two is a traverse� A traverse should have a waste area of less than � percent� In every iteration
step of stage one a matching graph is formed which nodes represent the available non universal
rectangles� The bene�t function in stage one delivers a high value for a possible pair if the average
percentage waste of all layouts of the potentially resulting meta rectangle is smaller than �ve
percent� The bene�t is zero if all layouts of the resulting meta rectangle violate the restrictions
like traverse lengths and cut distances� After the calculation of all weights in the matching graph
the maximum weight matching chooses the best marriages� Stage one ends if no more universal
rectangles can be constructed without violating the restrictions�

The second stage consists of only one iteration step� Here the n constructed universal rectangles
are matched to n�� traverses� For this also the maximumweight matching is used� As an indicator
for the decision whether a meta rectangle �resulted from the pairing of two universal rectangles�
is a traverse or not	 the percentage of the used area of its �relevant� layout is computed� To
�nd the relevant layout	 the �rst slicing instruction of the shape function is chosen with a y�value
smaller than or equal to the width of the stock rectangle� By multiplying the x� and the y�value
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of this slicing instruction the area which is claimed by the corresponding layout is calculated� To
compute the percentage of the used area	 only the areas of all contained demand rectangles have
to be added	 multiplied with 
�� and divided by the claimed area� The higher the percentage of
the used area	 the better the traverse� This has to be respected by the bene�t function of stage
two	 also ensuring that none of the other restrictions is violated�

Since the iterated matching is a greedy strategy	 the third stage is needed to improve those
traverses with a lot of waste area� The strategy of improvement is to choose the worse traverses	
for example those with less than �� percent used area	 and improve them by interchanging subtrees
of the corresponding slicing trees� To �nd out whether an interchangement should be made or not	
the sum of all x�dimensions of the traverses is calculated before and after the interchangement�
The idea is that the traverses are improved	 if the sum of all traverse lengths after interchanging is
smaller than before it	 because then all demand rectangles have been packed on a smaller domain�
Hence less waste will be produced� Figure � shows this proceeding by an example�

R3

R4

R5
R1 R2

R3 R4

R5R1 R2 R3 R4 R5R1 R2 R3 R4

R1 R2

R5

Figure �� Improvement of traverses by interchanging subtrees

Since the traverses all have nearly the same width as the stock rectangle	 the problem of packing
the rectangles into the stock sheet is reduced to a one dimensional bin packing problem� Therefore	
in the fourth stage the traverses are assigned to the stock rectangles� This could be done by a �rst
�t decreasing algorithm� list the traverses ordered by decreasing x�dimension and let the stock
sheets be indexed by increasing numbers� Assign the �rst traverse of the list to the stock rectangle
with the lowest index it �ts in� Then assign the second traverse by the same rule� If a traverse
�ts in none of the already used stock sheets	 a new stock rectangle has to be used� The �rst �t
decreasing �nds solutions for this one dimensional bin packing which are at most �� percent worse
than the optimal solution	 and it can unfortunately be this bad �Gar 
����� Therefore a modi�ed
�rst �t decreasing algorithm is used� The modi�cation is	 that after the normal �rst �t decreasing
is completed	 a systematic interchange of traverses between the used stock rectangles is made with
the aim to �ll the stock rectangles as full as possible� After the assignment has been computed	 all
traverses of one stock sheet are paired and the corresponding slicing trees and shape functions are
computed� So	 at the end of stage four for every used stock rectangle a slicing tree is computed
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which gives information about how to cut the glass sheet� The good results of the stock cutting
by iterated matching are shown in the tables of the following section�

� Computational Results

The algorithm	 programmed in C	 has been tested with several instances taken from real demands
of a glass factory	 containing between 
� and 
�
 rectangles� A PC���� ��� MHz� was used
to measure the time requirements of the algorithm� The time give information about the real
computation time	 i�e� requirements for input and output are not considered� The stock rectangles
are of dimension about ���� mm x ���� mm for all instances� The maximal traverse length is
���� mm and the minimal cut distance is �� mm for all instances except instance three� Here the
minimal cut distance is �� mm since the thickness of the required stock sheet is � mm and not �
mm as it is for the other instances�

Results of the Iterated Matching Algorithm

instance n area time in sec� average waste in � LNS RNS
in mm� stage 
�� stage � match traverse stock
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Table 
� Results of the four stage algorithm

Table 
 shows the data of the instances and the computational results of the four stage algorithm
discussed in section six� The number n of the demand rectangles of the instances is given in
the second column and the sum of all demand rectangle area is listed in the third column� The
time column gives information about the time requirements in seconds of stage one	 two and three�
Stage one and two are considered together	 because they both show how fast the iterated matching
works� The time needed to run the modi�ed �rst �t decreasing is not listed	 because it only takes
less than one second� The match waste is the average waste in percent of all traverses after stage
two	 the traverse waste is the waste after stage three and the stock waste is the average waste of
all computed layouts at the end of the algorithm�

The number of the at least needed stock rectangles �LNS� and of the real needed stock rectangles
�RNS� gives information about how good the modi�ed �rst �t decreasing assigns the traverses to
the stock rectangles� LNS is a lower bound for the number of required stock rectangles	 RNS is
the fractional number of really needed stock rectangles� LNS and RNS are calculated as follows�
Let k be the number of traverses after stage three	 ti the length of traverse i according to the







given width W and length L of the stock sheet� Then

LNS �



L
�

kX

i��

ti

is a lower bound for the number of needed stock sheets� Notice	 that it is not guaranteed that this
bound can really be reached� To calculate RNS	 let s � NI be the number of used stock rectangles
Ri	i � 
� � � � � s� Assume that Rs is the stock sheet which is �lled at least in length and let l denote
the used x�dimension of Rs� Then

RNS � �s� 
� �
l

L
is the fractional number of really needed stock rectangles�

The iterated matching produces traverses with little average waste �about � percent� in a very
short time� Exceptions are the instances two and three� Here the greedy behaviour of the matching
strategy has to be adjusted� This is done in stage three�

The improvement of the traverses in stage three takes in most cases only a few seconds �no more
than �
 seconds�	 except for instance two� If the third stage for solving instance two is considered
in detail it can be seen that most of the improvement is done in the �rst thirty seconds� Hence	
a time restriction for stage three would be useful� Notice	 that it is not the number of demand
rectangles	 that makes the algorithm impracticable for instance two� Instance six involves nearly
the same number of demand rectangles but it has the smallest waste of all computed instances
and it takes only two minutes and �� seconds to compute this solution�

The modi�ed �rst �t decreasing �nds good solutions for the assignment of the traverses to the
stock rectangles� This can be seen in the very small di�erence between LNS and RNS� Analyzing
Table 
	 it can be seen that the average waste of all computed layouts is less than six percent and
that the time requirement	 with exception of instance two	 is less than three minutes� Four of the
seven instances really take less than 

� seconds for computation�

Hence	 we can conclude that the iterated matching is a new e�cient method for solving the two
dimensional cutting stock problem subject to the restrictions of the industry which is applicable
for instances with a large number of rectangles�
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