4th Int. Conf. on Parallel Problem Solving from Nature (PPSN 1V), Berlin,
Germany, September 22-27, 1996

An Adaptive Parallel Genetic Algorithm for
VLSI-Layout Optimization

Volker Schnecke and Oliver Vornberger

University of Osnabriick, Dept. of Math./Computer Science
D-49069 Osnabriick, Germany

Abstract. The generation of a high quality layout during the design of
a VLSI microchip is a very complex combinatorial optimization prob-
lem. Components of a circuit have to be placed, and signal nets have to
be routed on an overall minimal area. In this paper a parallel Genetic
Algorithm for the combined optimization of placement and routing is
presented. The main focus is on the self-adaptation of the search pro-
cess: Several islands execute a sequential GA with different strategies. At
fixed intervals these strategies are ranked and each strategy is adjusted
to the next better one by assimilating its characteristical parameters.

1 Introduction

One strength of Genetic Algorithms (GAs) is their robustness, which mainly
i1s caused by the fact that they deal with a sample of candidate solutions to
an optimization problem at a time, and that these solutions are encoded in a
problem independent representation. In most cases this genotype coding is a
string (chromosome) of elementary data-types, preferably bits or floats. During
the optimization process, new candidate solutions are composed using more or
less standard mutation and crossover operators. When solving discrete real-world
optimization problems by a GA, it is often necessary to use a complex (non
string) genotype representation and operators which only generate admissible
solutions. Problem-specific knowledge is often used for hillclimbing during the
search.

After finding a feasible coding and implementing the operators, the ‘only’
work to do is to find a set of control parameters, that enable the GA to reach
a global optimum and to minimize the time needed for convergence. Because
these parameters depend on the representation and on the specific application,
and might be changed during the evolution process, it is useful to add a self-
adaptation mechanism for the values of these parameters.

In this paper, a parallel GA for a combinatorial optimization problem arising
during the computer aided design of microchips is presented. The main feature
of this algorithm is a tree-structured genotype representation with problem-
specific operators. The paper is organized as follows: It starts with a description
of the application and the chosen representation. After the outline of the genetic
operators, the strategy adaptation is explained and results for real-world circuits
are presented.

2 The Design of Macro-Cell Layouts

The layout generation is one of the most time consuming tasks in the design
cycle for VLSI- (very large scale integrated) microchips [13, 17]. The input to
this problem is a partitioned circuit, i. e. the elementary components of the circuit
are grouped to build up to 50 macro-cells (modules). On the borders of these
cells, terminals are located which have to be connected by signal nets.

The output of this design process is a layout for the circuit (fig. 1). The
layout describes the placement of the cells and the routes for the interconnection
wires between them. The main objective in layout optimization is to find an
arrangement with a minimal overall area. Cells are not allowed to overlap each
other, and the routing has to meet the technical constraints: space between
parallel wires has to be added to prevent short circuits and for some critical
nets the delay has to stay below a given threshold, which results in maximal
admissible wirelengths for these nets.

Due to the complexity of the single tasks, placement of the cells is usually
optimized separately from the computation of the routing for the interconnection
nets. During placement an estimated amount of routing space is added, which
restricts the maximal number of nets to be routed inside a channel between two
cells. The following routing is two-phase: in the global routing the ‘loose’ (global)
routes for all interconnection nets are determined, whereas during the detailed
routing the exact ways for the wires in the channels between the modules are
fixed. Due to an overestimation of the needed routing space during placement,
the layout has to be compacted after completion. In case of fault estimation,
the routing cannot be completed inside the reserved routing area. This is either
realized during the computation of the global routes, or during channel routing.
In the latter case, the process has to backtrack and different global routes for
some nets have to be chosen. If even global routing is impossible, the modules
have to be rearranged, i.e. the process has to backtrack to the placement task.

The splitting of the layout design process results from the fact that the
combined optimization of both tasks is too complex to be managed by most
optimization techniques. Nevertheless, because of the interdependencies between
placement and routing, it is wise to combine both tasks.

3 Genetic Layout Optimization

The classical work on layout generation with GAs is done by Cohoon et al.[3, 4].
They encode a placement by a polish notation of a binary slicing tree; thus
having a chromosome represented by a string. They use different recombination
operators, which work either directly on this string, or take the tree structure
into consideration by decoding the chromosome. Chan et al. [2] represent a
placement in a bit-matrix. The layout area is divided into discrete regions and
each row in the matrix describes the orientation and the position for a single cell.
Recombination is done by mixing two matrices. During the optimization incor-
rect placements with overlapping cells are allowed and are handled by adding a

Fig. 1. A layout for the circuit ami49 with 49 macro-cells and 408 nets

penalty term when computing the fitness. Esbensen [6] describes a GA for macro
cell placement where the genotype representation is a binary tree. In contrast to
the approach of Cohoon et al., this tree does not directly characterize a place-
ment, but it can be generated by decoding the tree in a traversal due to a given
order. His operators directly work on the tree structure.

The major drawback of the previously mentioned approaches is the fact, that
they only optimize the placement without considering the routes to be chosen
for the interconnection wirings. The approach described in this paper also uses a
genotype representation as a binary tree and non-standard genetic operators, but
here the global routes for the signal nets are computed before fixing the positions
of the cells. Due to this, routing is not restricted by any limited capacities arising
from wrong estimates for the need of routing space.

3.1 Genotype Representation

The genotype is encoded as a binary slicing tree, which defines the relative place-
ment of the cells (fig. 2, left). Tt is composed in a bottom-up fashion. In each
inner node two blocks (in the lowest level these are single cells) are joined to a
meta-block (partial placement). In each meta-block the orientations of the com-
bined blocks are fixed (fig. 2, right). If the blocks represent flexible macro-cells,
which are cells with variable aspect ratios, different shapes are stored for the
meta-block. Therefore every tree describes several possible shapes for the corre-

BRI m\
g\g B /\ A N

Fig. 2. The genotype (left), and the composition of a meta-block (right)

sponding layout, which enormously improves the performance of the GA. While
here only results for circuits with fixed cells are presented, more information and
empirical data for the flexible case can be found in a former paper [15].

After the construction of the tree, the relative positions of the blocks are given
and the locations of all terminals are known. Out of the tree a routing graph (fig.
3, (I1)) is constructed. The edges in this graph represent routing regions, which
are parts of a channel, the vertices describe connections between two channels.
For each net the shortest paths between its terminals in the routing graph are
computed. Thus afterwards, the number of all nets routed through each region is
known. For each channel inside a meta-block, routing space is added depending
on the widest region within this channel (fig. 3, (IIT)).

During the construction of the initial individuals a special heuristic, the it-
erated matching introduced by Fritsch and Vornberger [10], is used to take care
that highly connected cells are placed next to each other. For that purpose, out
of all possible combinations those pairings of blocks are chosen which yield a
maximal global quality with respect to the number of common nets. For further
details on this point see [16].

0! (11 (1) (Iv)

Fig. 3. A placement (I), the routing graph (II), the width for channel [A,E] is estab-
lished by its widest region [C,D] (I1I), and the layout with added routing space (IV)

3.2 Genetic Operators

During the optimization process the placement of the blocks has to be changed
and the routing has to be updated. The genetic operators directly work on
the tree-structure by combining subtrees of different individuals (crossover) and
modifying the tree of an individual (mutation).

The crossover operator takes two individuals out of which one offspring is
composed by combining two disjunct subtrees of both parents. Unfortunately,
these parts usually do not add up to a complete layout. After the combination
of the two subtrees, the missing blocks have to be added to the tree to ensure
that the offspring finally represents a correct layout. Here the iterated matching
is used again to ensure that inside the added part of the layout highly connected
cells are located near together.

A set of different mutation operators is used. The simplest operator changes
the orientation of a block or a meta-block. Another operator exchanges subtrees
inside the tree of the mutated individual. A distinction is made between exchang-
ing simple blocks, a block (leaf) with a meta-block (subtree), and exchanging
two meta-blocks. These cases represent the exchange of two cells, a cell with
a partial layout, and the exchange of two partial layouts on the layout surface.
Another mutation operator modifies the structure of the slicing tree by removing
a subtree or a single block from the tree and inserting it at a different position.
This corresponds to moving partial layouts or cells on the layout surface.

4 Strategy Adaptation

The performance of each GA depends on a set of control parameters like pop-
ulation size, crossover and mutation rates, and on the selection strategy. While
there was a lot of work done in determining a globally optimal set of control
parameters for a wide range of applications, in the nearer past some work on
self-adapting GAs has been published. Here no static parameter set is deter-
mined, but an adaptation of the parameters during the optimization process
takes place. This can be done by externally changing the mutation-rate in a pre-
defined manner like Fogarty describes [8], or controlling the parameters of the
GA by a simulated annealing like ‘cooling-schedule’, which i1s done by Esbensen
and Mazumder in their GA for macro-cell placement [7]. Adaptation can be con-
trolled by the evolution process itself by using a (meta-) GA for the optimization
of the parameters like Back [1] or Freisleben and Hartfeler [9] have done. Wang
et al. [18] introduce a hierarchy of GAs and suggest even to adapt the repre-
sentation. The concept of competing subpopulations by Schlierkamp-Voosen and
Miihlenbein [14] is a self adapting approach, where the sizes of subpopulations,
which pursue different strategies, are adapted. Successful strategies are used by
larger populations, while the size of less productive populations decreases.

The adaptation in this application also takes place on the subpopulation
level, but here the population sizes are fixed, while the strategies are flexible.
A strategy is characterized by a parameter set for the GA. The parameter set

consists of the mutation rate, the crossover rate and the threshold for the trun-
cation selection. Further a strategy fixes the frequency of the different mutation
operators.

Due to the fact that the power of the crossover operator to create new in-
dividuals is limited to the combination of two subtrees of both parents, within
this application mutation is more important than in common GAs with simple
encoding. The crossover operator only combines meta-blocks, but never creates
a small meta-block, because in both parents always ‘real’ subtrees (with more
than one leaf) are chosen. Hence there are several mutation operators, and ev-
ery offspring is created either by crossover or by mutation. In all generations the
total number of created offspring is constant.

After a fixed interval all strategies are ranked, and the parameters of each
strategy are adapted to the values of the next better strategy. The best strategy
is expanded, 1.e. its characteristical parameters are strengthened. For example,
if the best strategy i1s distinguished by a low crossover rate, then this value will
be decreased.

If the optimization on an island gets stuck, i.e. if no progress has been re-
alized since the last adaptation, the strategy of this island is reset. Therefore
the parameters are set back to one of the initial settings. This ensures that a
strategy which has got lost in the beginning, but might be helpful at this time,
1s reactivated to boost the optimization.

The most important point in the implementation of an adaptation is to fix
the quality criterion, regarding to which the strategies are ranked. In [14], the
progress of the i1slands 1s measured based on the fitness of the best individuals
observed over a period of time. Because of the small subpopulation size in this
application, a fitness based quality criterion turned out to be not useful. This
value is very much influenced by migrating individuals. A better criterion to
describe the progress during the optimization process is the response to selection
used in Mithlenbeins BGA [11]. This response is defined by the difference between
the average fitness of a (sub-) population in two succeeding generations.

5 Results

The GA has been tested with real-world circuits. These are taken from a suite
of benchmarks made available for design workshops in the early 90’s, and are
mostly cited in the literature as the MCNC-benchmarks'. It is still the most
referenced benchmark suite for macro-cell layout generation, and includes par-
titioned circuits with 10 to 49 cells, and up to 408 nets.

In fig. 4 the effect of the strategy adaptation for a sample optimization run
is visualized. The circuit is ame33, which consists of 33 cells and 123 nets. The

! The name has been historically established. These benchmarks were originally main-
tained by ‘North Carolina’s Microelectronics, Computing and Networking Center’
(MCNC), but are now located at the CAD Benchmarking Laboratory, North Car-

olina State University.

4 —_
number of 3 7]

reset islands] _ H ﬂﬂHﬂ

exchange
meta-blocks change tree structure
-

frequency of the
different
mutation-operators

exchange blocks

0%

25 %
mode of

offspring creation 50 % 7

25 % crossover

0%

2]

4.6 mm

4.2 mm?

layout area 3 g.,,,m? -

3.4 mm?

2 _|

3.0mm

I I I I I I I I
200 400 600 800 1000 1200 1400 1600

generation

Fig. 4. The effect of the adaptation for a sample optimization run

results were achieved on a Parsytec GC/PP machine using a 12 processor net-
work. Each island held a population of 20 individuals, the migration interval
was 6 generations, and adaptation took place every 30 generations. An average
of all values was taken over the 12 subpopulations except for the layout area
(bottom), which describes the fitness of the best individual in the whole system.
At the beginning of the optimization process, the crossover rate, 1.e. the quota
of offspring created using crossover rose up to 75% around the 500th gener-
ation. After that point, with decreasing variation in the population, mutation
replaced crossover as the favourite offspring creation method. At the end (= after
1500 generations), some strategies were reset, which yielded in balancing out the
crossover /mutation rate. The part of the figure which represents the frequency
of the four tree-modifying mutation operators shows that the operator, which
exchanges two meta-blocks might be useless, and that the changing of the tree
structure seems to be more important, but this differs on single runs. Neverthe-
less, the shown progress of the mutation/crossover rate is typical for this circuit.

0%

25 %
mode of mutation
. . 50 %
offspring creation -
25%
0%
75.0 mm?

layout 70 04mm?2
area

[mm?] 65.0 mm?

60.0 mm?2

I I I I I I I I
200 400 600 800 1000 1200 1400 1600

generation

Fig. 5. The adaptation of crossover/mutation rate for circuit ami49 (avg. of 10 runs)

Figure 5 shows the average development of this rate for circuit ami49 with 49
cells and 408 nets. The runs were started with the same initial settings like those
used in the other run shown in fig. 4. It is seen that for this case — in contrast to
circuit ami33 — in the early stages of the optimization, mutation is much more
efficient than crossover for enhancing the progress of the optimization. While
both circuits differ in the number of cells and nets, the main difference is in
the connectivity: each net in circuit ami33 connects an average of 3.7 terminals,
whereas in circuit most nets only connect two terminals (avg. 2.3).

Figure 6 presents the effect of the adaptation on the performance, again for
circuit ami33. The values are taken from runs on 16 processors with a subpop-
ulation size of 10 individuals, an average of 20 runs is shown. The upper curve
describes the performance resulting from experiments with the parameters set
to the average values of the initial strategies of the general case. Thus all islands
are pursuing the same strategy. The middle curve shows that the performance
can be enhanced considerably, if the islands use different strategies. Note that
in both cases no adaptation takes place. As it can be gathered from the lowest
curve, the best performance is reached if the 1slands start with different strategies
which are adapted during the search.

6 Conclusions and Future Work

The presented parallel GA computes densely packed placements for the modules
of a circuit with short wirings for the signal nets. The main reasons for enabling

4.2 1

one fixed strategy for all islands -+
4.0 7 different strategies without adaptation -----
3.8 1 different strategies with adaptation ———
layout 3.6
area
[mm?] 3.4 -
3.2 4
3.0 A
I I I I]
50 500 1000 1500 2000
generation

Fig. 6. The performance of the parallel GA depending on the use of different strategies
and adaptation (avg. of 20 runs each)

the optimization of this real-world combinatorial problem by a GA are

the use of a tree structured genotype encoding

— the integration of the routing in the placement process
— the application of problem-specific operators

the strategy adaptation

Strategy adaptation returns to the GA some of its robustness, which may
have been lost due to the inclusion of problem specific knowledge in the opera-
tors. It has been shown that especially the development of the crossover/mutation
rate differs for the presented problems. Without adapting this parameter during
the optimization, search would be less efficient.

After computing the global routes in the current implementation, the width
chosen for a channel is too high in most cases, because one track is added for each
net inside a routing region. This leads to layouts with an about 10 % larger area
than the best results published in literature. Including a sophisticated detailed
routing procedure before fixing the widths of the routing regions would avoid
this drawback. Nevertheless, the main strength of GA described in this paper is
the integration of the routing into the placement, which are usually separated
tasks in other (genetic and non-genetic) approaches. Here the exact positions for
the modules are fixed not until the computation of all global routes.

Further work in this project will be the implementation of a different re-
combination operator. Generating an offspring out of the trees of two parent
individuals is not very efficient. On the one hand two disjunct subtrees have to
be chosen, which decreases the number of potential pairings, and on the other
hand a third part has to be added to produce a complete layout. Multi-parent
crossover like it is used by Eiben et al. [5] or even implementing a gene-pool
recombination operator like it is analysed in the work of Miihlenbein and Voigt
[12] might improve the performance of the GA.

7

Acknowledgements

This work is being supported by the German government in the BMBF-project
"HYBRID-Application of Parallel Genetic Algorithms in Combinatorial Opti-
mization’. The authors thank the Paderborn Center for Parallel Computing
(PC?) for the opportunity to use the parallel machines located there.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Th. Back, Parallel Optimization of Evolutionary Algorithms, PPSN 111, Springer
LNCS 866, 1994, 418-427

H. Chan, P. Mazumder, K. Shahookar, Macro-cell and module placement by genetic
adaptive search with bitmap-represented chromosome, Integration, 12 (1991), 49-77
J. P. Cohoon, W. D. Paris, Genetic Placement, Proc. of IEEE Int. Conf. on CAD
1986, 422-425

J. P. Cohoon, S. U. Hegde, W. N. Martin, D. S. Richards, Distributed Genetic
Algorithms for the Floorplan Design Problem, IEEE Trans. on CAD, Vol. 10 (4),
April 1991, 483-492

A. E. Eiben, P.-E. Raué, Z. Ruttkay, Genetic algorithms with multi-parent recom-
bination, PPSN I1I, Springer LNCS 866, 1994, 78-87

H. Esbensen, A Genetic Algorithm for Macro Cell Placement, Procs. of the Euro-
pean Design Automation Conference, 1992, 52-57

H. Esbensen, P. Mazumder, SAGA: A Unification of the Genetic Algorithm with
Stmulated Annealing and its Application to Macro-Cell Placement, Procs. of the
7th Int. Conf. on VLSI Design, 1994, 211-214

T. C. Fogarty, Varying the Probability of Mutation in the Genetic Algorithm, Procs.
3rd ICGA, J. D. Schaffer (ed), Morgan Kaufmann Publ., 1989, 104-109

B. Freisleben, M. Hartfelder, Optimization of Genetic Algorithms by Genetic Al-
gorithms, Artificial Neural Nets and Genetic Algorithms, R. F. Albrecht, C. R.
Reeves, N. C. Steele (eds.), Springer Verlag, 1993, 392-399

A. Fritsch, O. Vornberger, Cutting Stock by Iterated Matching, Operations Research
Proceedings, U. Derigs, A. Bachem, A. Drexl (eds), Springer Verlag, 1995, 92-97
H. Miihlenbein, D. Schlierkamp-Voosen, The science of breeding and its application
to the breeder genetic algorithm BGA, Evolutionary Comp., 1(4), 1994, 335-360
H. Miuhlenbein, H.-M. Voigt, Gene Pool Recombination in Genetic Algorithms,
Procs. of the Metaheuristics Int. Conf., I. H. Osman, J. P. Kelly (eds.), Kluwer
Academic Publishers, Norwell, 1995

S. M. Sait, H. Youssef, VLSI Physical Design Automation: Theory and Practice,
McGraw-Hill (1995)

D. Schlierkamp-Voosen, H. Miihlenbein, Strategy Adaptation by Competing Sub-
populations, PPSN 111, Springer LNCS 866, 1994, 199-208

V. Schnecke, O. Vornberger, Genetic Design of VLSI-Layouts, Procs. GALE-
STA 95, IEE Conference Publication No. 414, 1995, 430-435

V. Schnecke, O. Vornberger, A Genetic Algorithm for VLSI Physical Design Au-
tomation, Procs. ACEDC 96, University of Plymouth, UK, 1996, 53-58

N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic
Publishers, 1993

G. Wang, E. D. Goodman, W. F. Punch, Simultaneous Multi-Level Evolution,
Technical Report 96-03-01, MSU GARAGe, 1996

10

