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Abstract� In this paper arti�cial neural networks are adapted to a short term forecast
for the sale of articles in supermarkets� The data is modelled to �t into feedforward
multilayer perceptron networks that are trained by the back�propagation algorithm�
For enhancement this has been parallelized in di�erent manners� One batch and two
on�line training variants are implemented on parallel Transputer�based Parsytec

systems� a GCel with T��� and a GC�PP with PowerPC processors and Transputer
communication links� The parallelizations run with both the runtime environments
Parix and PVM�

� Introduction

Time series prediction for economic processes is a topic of increasing interest� In order
to reduce stock�keeping costs� a proper forecast of the demand in the future is necessary�
In this paper we use arti�cial neural networks for a short term forecast for the sale of
articles in supermarkets� The nets are trained on the known sales volume of the past
for a certain group of related products� In addition information like changing prices
and advertising campaigns is also given to the net to improve the prediction quality�
The net is trained on a window of inputs describing a �xed set of recent past states by
the back�propagation algorithm ����
For enhancement the algorithm has been parallelized in di�erent manners� First the
training set can be partitioned for the batch learning implementation� The neural
network is duplicated on every processor of the parallel machine� and each processor
works with a subset of the training set� After each epoch of training the weight changes
are broadcasted and merged�
The second way is the parallel calculation of the matrix products that are used in the
learning algorithm� The neurons in each layer are partitioned into p disjoint sets and
each set is mapped on one of the p processors� The new activations are distributed
after each training pair� We have implemented this on�line training in two variants�
For the �rst parallelization one matrix product is not determined on one processor� but
it is calculated while the partial sums are sent around on a processor cycle� The second
method tries to reduce communication time� Therefor it needs an overhead in both
storage and number of computational operations�



The parallel implementations take place on parallel Transputer�based Parsytec sys�
tems� a GCel with T	
� and a GC�PP with PowerPC processors and Transputer
communication links� The parallelizations run with both the runtime envirionments
Parix and PVM�

� Sales forecast by neural networks

In our project we use the sale information of �
 articles of the same group in a super�
market� The information about the number of sold articles and the sales revenues in
DM �Deutsche Mark� German currency unit� are given weekly starting September �����
In addition there are advertising campaigns for articles often combined with temporary
price reductions� Such a campaign lasts about two weeks and has a signi�cant in�uence
on the demand on this article� Sale� advertising and price for two di�erent articles are
shown in �gures � and ��
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 �without advertising�

The aim is to forecast the sale of an article for the next week by neural networks� We
use a feedforward multilayer perceptron network �see �gure �� with one hidden layer
together with the back�propagation training method �
�� ���� ����
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	 �with advertising�

For prediction the past information of n recent weeks is given to the input layer� The
only result in the output layer is the sale for the next week� So there is a window of n
weeks in the past and one week in the future� Both the input and output together are
called a training pair� One training of all training pairs is called an epoch�

��� Arti�cial neural networks

Arti�cial neural networks consist of simple calculation elements� called neurons� and
weighted connections between them� In a feedforward multilayer perceptron ��gure ��
the neurons are arranged in layers and a neuron from one layer is fully connected only to
each neuron of the next layer� The �rst and last layer are the input respectively output
layer� The layers between them are called hidden� Values are given to the neurons
in the input layer� the results are taken from the output layer� The outputs of the
input neurons are propagated through the hidden layers of the net� Figure 
 shows the
algorithm each neuron performs�
The activation ahj of a hidden or output neuron j is the sum of the incoming data
multiplied by the connection weights like in a matrix product� The individual bias
value �hj is added to this before the output ohj is calculated by a sigmoid function f �
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Figure 
� How a perceptron works

ohj �� f�ahj�

f is a bijective function f � ������ ��
� �� because the output has to be ohj � �
� ���
We use

f�a� ��
�

� � exp��a�
�

Such a feedforward multilayer perceptron can approximate any function after a suitable
amount of training� Therefor known discrete values of this function are presented to
the net� The net is expected to learn the function rule ����
The behaviour of the net is changed by modi�cation of the weights and bias values�
The back�propagation learning algorithms we use to optimize these values is described
later together with its parallelizations�

��� Preprocessing the input data

An e�cient preprocessing of the data is necessary to input it into the net� All infor�
mation must be normalized to �t into the interval �
� ��� We assume that the necessary
information is given for T weeks in the past� With the following de�nitions

ADV t
i �� number of advertising days for article i within week t

SALt
i �� sale of article i within week t

MAXSALi �� max
��t�T

n
SALt

i

o

we have decided to use the following inputs for each article i and week t�

advti ��
ADV t

i

�
�campaign days of � opening days�
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Figure �� Feedforward multilayer perceptron for time series prediction
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���
��within week t

salti ��
SALt

i

MAXSALi

� 
�	

For each article i and recent week t we use a three�dimensional vector�

vecti ��
�
advti� pri

t
i� sal

t
i

�

For a week t in the future the vector is reduced by the unknown sale�

dvecti ��
�
advti� pri

t
i

�

To predict the sale for one article within a week t� we use a window of the last n weeks�
So we have the following input vector for each article i�

inputti ��
�
vect�n

i � vect�n��
i � ���� vect��i �dvecti

�

Because all the considered articles belong to one product group� we have quite a constant
sales volume of all products� An increasing sale of one article in general leads to a
decrease of the other sales� Due to this� we concatenate the input vectors of all p
articles to get the vector given to the input layer�

INPUT t ��
�
inputt�� input

t
�� ���� input

t
p

�

The sale of article i within week t �salti� is the requested nominal value in the output
layer that has to be learned by one net for this INPUT t vector� So we have p nets



and the i�th net adapts the sale behaviour of article i� Therefore we have a training set
with the following pairs �see �gure ���

�INPUT t� salti� with n � t � T

To forecast the unkown sale salT��i for any article i within a future week T �� we give
the following input vector to the trained i�th net�

INPUT T��

The output value of this net is expected to be the value salT��i � which has to be re�scaled
to the value for the sale of article i within week T � ��

SALT��
i �

salT��i �MAXSALi


�	

��� Empirical results of the prediction
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 with n � �

Here we present the behaviour of eight nets� We have trained nets for

�� article 
���

 respectively article 
���
	 �see �gures � and ��

�� with two respectively three weeks past information �n � � respectively n � 
�


� where the number of hidden neurons is �
� respectively �

�� of the number of input
neurons�
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We are using the information of �
 articles in the input layer� The topology of the net
is described by the syntax� �input neurons�hidden neurons�output neurons��
The given data is split into a training set �week 
������ to week �������� and a test
set �week ��������� The test set is not trained and only considered to check whether
the net has generalized the behaviour of the time series�
With n � � we have 
� pairs in the training set and one in the test set� with n � 

we have 

 pairs in the training set and one in the test set� The �gures � and � show
the root mean square error on the training and the test set� while the nets are learning
�


 epochs� This error is going down immediately on the training set� especially for
the larger nets�

Table �� Training times of di�erent nets on SPARC �
��


net sizes ����
��� �����
�� �	
��
�� �	
��

��
�


 epochs ���� sec 
	�� sec 
��
 sec �
�� sec

More important is the error on the test set � the prediction error� This is better for the
smaller nets� They need more epochs to learn the rule of the time series� but because
of this they can generalize their behaviour better�
The prediction error of the smaller nets in means of sales can be seen from �gures �



and �� For the week ������� the forecasted sales are drawn dotted� For both articles
the error is smaller than one piece� The time for training the nets on a sequential SUN
SPARC �
��
 can be seen from table ��
Summarizing the results of the forecasting quality we can say that the error on the test
set can be reduced to an acceptable low level� The re�transformation to the sale values
shows that we can predict the sale for the next week with an su�cient accuracy after
an enormous training e�ort�

� Parallelization

To reduce the computation time for training� the back�propagation algorithm has been
parallelized in three ways� Before the di�erent parallelizations are described the back�
propagation algorithm is explained�

��� Back�Propagation algorithm

The backpropagation algorithm consists of two phases� the forward phase where the
activations are propagated from the input to the output layer� and the backward phase�
where the error between the observed actual and the requested nominal value in the
output layer is propagated backwards in order to modify the weights and bias values�

����� Forward Propagation

The idea of the forward phase is shown in �gure �� The weights of the needed receptive
connections of neuron j are one row of the weight matrix� The following values are
calculated�

activation of neuron j� aj ��
X
i

oi � wji � �j

output of neuron j� oj �� f�aj� �
�

� � exp��aj�

����� Backward Propagation

For the backward phase ��gure �� the neuron j in the output layer calculates the error
between its actual output value oj � known from the forward phase� and the expected
nominal target value tj�

�j �� �tj � oj� � f
��aj�	 
z �

oj ����oj�

The error �j is propagated backwards to the previous hidden layer�
The neuron i in a hidden layer calculates an error ��i that is propagated backwards
again to its previous layer� Therefor a column of the weight matrix is used�

��i �� �
X
j

wji � �j� � f
��ai�	 
z �

oi����oi�

To minimize the error the weights of the projective edges of neuron i and the bias values
in the receptive layer have to be changed� The old values have to be increased by�
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Figure �� Forward and backward propagation

�wji � � � �j � oi

��j � � � �j�

� is the training rate and has an empirical value� � � ��
The back�propagation algorithm optimizes the error by the method of gradient descent�
where � ist the length of each step�

����� Modi�ed back�propagation

The optimal con�guration of a feedforward multilayer perceptron network with its in�
put� hidden and output layers is very di�cult to �nd� Too many hidden neurons lead to
a net that is not able to extract the function rule and takes more time for learning� With
a lack in hidden neurons it is not possible to reach any error bound� Input and output
layers are determined by the problem and the function that is to be approximated�
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Figure 	� Modi�ed back�propagation with neuron splitting

The modi�ed back�propagation algorithm ��� is able to increase the quality of a net by
monotonic net incrementation� The training starts with a net of a few hidden neurons�
Badly trained neurons are split periodically while learning the training set� The old
weights are distributed at random between the two new neurons �cf� Figure 	�� This is
done until a maximumnumber of neurons within a hidden layer is reached� By training
the net with the modi�ed back�propagation algorithm a better minimum of the error
is reached in shorter time�

��� Batch Learning

For parallel batch learning the training set is divided and learned separately with some
identical copies of the net in parallel ���� The weight corrections are summed up and
globally corrected in all nets after each epoch�
Communication is only necessary for the calculation of the global sum of the weight
corrections after each epoch� In addition to this a global broadcast has to be performed
after the master node has calculated the random numbers for the new weights after
splitting� but this happens very rarely�
The batch learning is di�erent from the on�line training concerning the convergence
speed and the quality of approximation� There are training problems where the batch
learning algorithm is more suitable than the on�line training and vice versa�

��� On�line training

The on�line training changes all the weights within each backward propagation after
every item from the training set� Here the parallelization is very �ne�grained� The
vector�matrix�operations have to be calculated in parallel� This needs a lot of commu�
nication�



The responsibility for the calculation of the activations and output of the neurons is
distributed among the processors� The hidden and output layers are partitioned into
p disjoint sets and each set is mapped on one of the p processors� Therefor the weight
matrices are distributed in rows and these are distributed among the processors� When
splitting is necessary the neuron and its weights are broadcasted around the processor
cycle� The responsibility for this neuron is given to the �rst processor with the lowest
load�
After each step of the propagation the new output vector in the layer has to be broad�
casted because each processor needs the whole receptive layer to calculate the activa�
tions of its own neurons for the next step�
The backward phase is more complicated� for the error propagation each processor
needs the columns of the weight matrices to calculate the error in the previous layer�
but the weights are stored and updated in the rows of the weight matrix due to the
operations in the forward propagation� There are two di�erent methods to implement
the parallel calculation of the errors�
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Figure �� Parallel on�line backward propagation of Yoon et�al�



����� Parallel backward propagation of Morgan et�al�

The �rst method is described by Morgan et�al� ���� Here the matrix products are
calculated in parallel� while the subsums are sent around the processor cycle� At the
end each processor has found its ���

��k �� �
X
j

wjk � �j� � ok � ��� ok�

The advantage of this parallelization is that the weight matrices are stored and modi�ed
only once� distributed on all processors� Therefor this parallelization has to calculate
the partial sums of the error between each of the p � � communication steps�

����� Parallel backward propagation of Yoon et�al�

To reduce communication time between the processors we have also implemented the
idea of Yoon� Nang and Maeng �	�� For each parallel calculated activation of a neuron
its receptive and projective weights are stored on the responsible processor� Figure �
shows the distribution of the neurons and the weight matrices among three processors�
In each backward step one processor updates the weights of its projective and receptive
neurons� So we have to store the weight matrices twice with the same overhead in calcu�
lation� The advantage of this parallelization is that we can do the p�� communications
for the broadcast without interruptions after the error calculation is �nished�

� Implementations and experimental speed�ups
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�

The parallel implementations take place on Transputer�based Parsytec systems� We
use a GCel with T	
� and a GC�PP with PowerPC �
� CPUs and Transputer com�
munication links� The parallelization runs with both the runtime environments Parix
Version ��� �GCel� resp� ��
 �GC�PP� and PVM�Parix ����
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speed�up for Yoon et�al�

speed�up for Morgan et�al�

on�line training Parix ���

Figure ��� Speed�ups for GC�PP with PowerPC

The �gures �
 and �� show the reached speed�ups with both systems� The results show
that the batch learning algorithm scales better than the on�line training� The reason
for this are the very high communication demands for each pair trained in contrast to
the one communication per epoch for parallel batch learning� As expected the on�line
parallelization of Morgan et�al� is worse for small nets and less processors than that of
Yoon et�al� according to the uninterrupted communications� This di�erence vanishes
for relatively large number of neurons and processors�
The comparison of both hardware architectures shows that the T	
� system scales
better than the GC�PP� The computational power of the PowerPC is much higher than
that of the T	
�� But the ratio of the communication and CPU performance is higher
on T	
� systems�

� Conclusions and future research

It has been shown that feedforward multilayer perceptron networks can learn to approx�
imate the time series of sales in supermarkets� For a special group of articles neural
networks can be trained to forecast future demands on the basis of the past data�
The back�propagation algorithm has been parallelized to reduce the enormous training
times� Three di�erent parallelizations have been implemented on Parsytec paral�
lel systems� The batch learning is best for large training sets on systems with bad
communication performance� The on�line parallelization works well with large num�
bers of neurons and scales on systems with very good communication performance in
proportion to the computing performance�
The variant of Yoon et�al� has less communication demands than that of Morgan et�al�
This advantage appears especially for small nets�
For the future the modelling of the input vectors should be improved� especially season
and holiday information have to be given to the net� the value of changing prices can



be modelled quantitatively� One important aim will be the reduction of input neurons�
By correlation analysis some of the hundreds of single time series should be merged or
denied� This will lead to smaller nets with shorter training times�
To handle the complex amount of data within an acceptable time the presented paral�
lelizations of the back�propagation algorithm are worthwile and necessary�

Acknowledgement

Thanks to the Paderborn Center for Parallel Computing �PC�� at the University of
Paderborn� Germany� All the measurements with T	
� and PowerPC processors took
place there�

References

��� D�E� Rumelhart� G�E� Hinton� R�J� Williams� Learning internal representations by

error propagation� In D�E� Rumelhart and J�L� McClelland �Eds��� Parallel Dis�
tributed Processing� Explorations in the Microstructure of Cognition� Vol� �� pp�

�	�
��� MIT ��	��

��� D�E� Rumelhart� B� Widrow� M�A� Lehr� The Basic Ideas in Neural Networks� Com�
munications of the ACM Vol�
�� No�
� pp� 	����� March �����

�
� Z� Tang� P�A� Fishwick� Feed�forward Neural Nets as Model for Time Series Fore�

casting� TR���

	� University of Florida� �����

��� V�R� Vemuri� R�D� Rogers� Arti�cial Neural Networks � Forecasting Time Series�

IEEE Computer Society Press ���
�
�� �����

��� P�C� McCluskey� Feedforward and Recurrent Neural Networks and Genetic Pro�

grams for Stock Market and Time Series Forecasting� Master thesis CS��
�
��
Department of Computer Science� Brown University� Providence� Rhode Island�
September ���
�

��� A� Petrowski� A pipelined implementation of the back�propagation algorithm on a

parallel machine� Arti�cial Neural Networks� pp� �
������ Elsevier Science Publish�
ers B�V� �North�Holland�� �����

��� N� Morgan� J� Beck� P� Kohn� J� Bilmes� E� Allman� J� Beer� The Ring Array

Processor� A Multiprocessor Peripheral for Connectionist Applications� Journal of
Parallel and Distributed Computing ��� pp� ��	����� Academic Press Inc�� �����

�	� H� Yoon� J�H� Nang� S�R� Maeng� A distributed backpropagation algorithm of neural

networks on distributed�memorymultiprocessors� Proceedings of the 
rd symposium
on the Frontiers of Massively Parallel Computation� pp� 
�	�
�
� IEEE ���
�

��� I� Gl�ockner� Monotonic incrementation of backpropagation networks� Proceedings
of the International Conference on Arti�cial Neural Networks �ICANN�
�� ���
�


