

University of Osnabrueck

＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

Google maps on mobile devices with J2ME

＿＿

Li Wang

Supervisor:

Prof. Dr. Oliver Vornberger

Prof. Dr. Helmar Gust

Department of Cognitive Science

University of Osnabrueck

07. 27. 2006

Acknowledgement

I would like to express my sincere gratitude to many people for their guidance and
help, especially I want to thank

• Mr. Prof. Dr. Oliver Vornberger for helping me to choose such an interesting topic
and his good supervision.

• Mr. Prof. Dr. Helmar Gust for his good supervision and patient guidance.

• Mr. Patrick Fox for his guidance during the whole course. Thanks for having read
the draft of this thesis and having made his precious comments and suggestions.

• Mr. Reid for his source code of GMapViewer. Due to his generous sharing I do not
have to develop the whole midlet suite from very beginning.

• Mr. David Song for his help in English.

I also want to thank my family for their support and encouragement.

Table of Contents

1 Introduction...4
2 Background Knowledge..5

2.1 Three editions of Java ..5
2.2 Configuration ...6
2.3 Profile...7
2.4 Optional Packages..8

3 Develoment Environment ...11
3.1 Download...11
3.2 Installation and Integration ..12

4 Packages in MIDP and CLDC ..17
4.1 Package javax.microedition.midlet and lifecycle control.............................17

4.2 Package javax.microedition.lcdui and user interface system18

4.3 Package javax.microedition.rms and record management.............................22

4.4 Package javax.microedition.io and generic network system........................25

5 Google maps on cell phones ...29
5.1 Introduction..29
5.2 Project Aims...29
5.3 Report Outline..29
5.4 System Analysis ...29
5.5 System Design ...30
5.6 System Implementation ...33
5.7 About the assistant classes ...41
5.8 Test the program...41
5.9 Conclusion ...42

6 Conclusion ..45

A References ...46
B Figure list...48
C Content of CD-ROM...49

Introduction

4

1 Introduction

This thesis is a short presentation about the topics of j2me (java 2 micro edition)
which is developed by Sun Microsystems to provide a portable application environ-
ment for embedded devices such like cell phones and PDAs. The rest of this thesis
will be divided into 5 major parts.

Part 2 will give you an overview of J2ME platform including the history thing and

three basic concepts: configuration, profile, optional package.
Part 3 will introduce you how to develop an actual J2ME application – Java midlet.

What do we need in our computer and how to deploy it.
Part 4 will give you a short introduction to the basic packages available in CLDC and

MIDP1.0.
Part 5 is the largest and the most important part. In this part, I will show you an actual

 Java midlet that I have developed which can show google maps on our cell
phones.

Part 6 is the conclusion of the whole thesis.

This thesis assumes that you have some familiarity with java language.

Background Knowledge

5

2 Background Knowledge

2.1 Three editions of Java
In the beginning of 1990, Sun Microsystems developed a programming language
which was called “OAK” for the consumer devices. It becomes today a more general
purpose programming language known as Java. But it is not a whole part, actually
from Java 2, it was split into 3 distinct parts: J2EE for the enterprise usage, J2SE for
the general desktop market and internet applications and J2ME for embedded devices.
You can find the following figure everywhere on the web, it shows the relationship
between these 3 editions clearly:

Figure 1: Three Editions of Java

But J2ME is also not a single entity, because those devices that it hast to face have
entirely different run time environment. For example it could be with or without
keyboard, display, network interface. Sun Microsystems introduces then 3 important
concepts to deal with this problem: Configuration, Profile and Optional Package. We
must understand them well because they determine the features of Java that you can
use, which application programming interfaces (APIs) are available, and how your
applications are packaged. Before I start to introduce these three concepts there are
two abbreviations that I think you should know: JCP and JSR.

JCP and JSR: Actually Sun is the ultimate authority for Java, but much of work in
defining and completing this platform is done by the Java Community Process (JCP).
Through JCP the organizations and individuals can participate in the definition
process of different parts of the Java. This is the process: A specification request
(known as a JSR) is submitted with a specific proposal to extend the Java platform. If
the JSR is accepted for development, an Expert Group is formed to define a formal
specification for the JSR. When ready, the specification is published. For more
information about the JCP, see the JCP Web site at [JCP].

Background Knowledge

 6

From this site, you can get a list of all JSRs that have been defined or are in the
process of being defined including all J2ME related JSRs.

2.2 Configuration
All of the devices that J2ME faces can be divided into two categories according to the
characteristics like the amount of memory available, the processor type and the
network connection type. J2ME defines for each of them the virtual machine and a set
of core classes. They are called configurations. There are currently two kinds of
configurations: CLDC (Connected Limited Device Configuration) and CDC
(Connected Device Configuration). The characteristics of those devices they target
separately are listed below so that you can easily find the differences between them:

CLDC targets the devices with

• Very simple user interface
• Low level memory budgets (160 kB to 512 kB)
• 16 or 32 bit processors
• Wireless communication
• Example: cell phones, PDAs

CDC targets those devices with
• Large range of user interface capabilities
• Memory budgets in range of 2 to 16 megabytes
• 16 or 32 bit processors

 • Connectivity to some type of network
 • Examples: TV set-top boxes, Internet TVs

As a software developer we are of course interested in which class libraries are
available in these two configurations. Note that the CDC is a superset of CLDC. The
CDC includes all of the classes defined by the CLDC. Java Midlet is J2ME program
that runs on cell phones based on CLDC. For this purpose we have to learn to live
within the restrictions imposed by CLDC. There are currently 2 versions of CLDC.
CLDC 1.0 is defined by JSR-30 in JCP. CDLC 1.1 is defined by JSR- 139.

1) CLDC 1.0. It includes 4 packages:
 •java.io
 •java.lang
 •java.util
 •javax.microedition.io

The first three packages can be seen as the subset of corresponding J2SE packages.
But there are also a few differences between them. The main differences are as
follows:

 •CLDC1.0 do not implement finalization so there is no finalize() method in

java.lang.Object in CLDC1.0.

Background Knowledge

 7

•CLDC1.0 includes the majority of the exceptions defined by the J2SE
java.lang package, but most of the error classes have been removed. The

CLDC only defines three of these error classes: java.lang.Error ,
java.lang.OutOfMemoryError and
java.lang.VirtualMachineError.

•CLDC1.0 does not support floating point. Methods taking or returning floating
point values are removed from all classes.

The package javax.microedition.io deals with the generic connection
framework. This thesis will discuss the package later in detail.

2) CLDC 1.1 Today more and more cell phones support CLDC1.1. The main
difference between CLDC1.0 and CLDC1.1 is the version 1.1 supports floating point.

Besides the class libraries, configuration defines also the virtual machine. Perhaps the
biggest difference between the CDC and the CLDC is that the CDC requires a
full-featured Java virtual machine. Sun has released a new Java VM, the Compact
VM (CVM), for this purpose—it is more portable and efficient than the standard VM.
The virtual machine that CLDC defines is called KVM (kilobyte virtual machine). It
is not a full java virtual machine. The main difference between them perhaps is the
class loading mechanism. Class loading in J2SE is performed by class loaders,
including application-defined class loaders. By contrast, the CLDC specification
requires implementations to provide their own class loading mechanism that cannot
be overridden or extended by application code in the consideration of security. Sun's
CLDC reference implementation includes an example implementation of this
functionality. We will refer it as a Java Application Manager (JAM). It is sometimes
also called Application Management Software(AMS).

2.3 Profile
The next important concept in J2ME is profile. As we already learned, the
configuration helps already a lot to distinguish different types of devices. But they
have to be refined further because a same configuration might cover devices with very
different user interface and input output system. A profile complements a
configuration by adding additional classes that provide features appropriate to
particular type of device. These profiles define mostly the application life cycle model,
the user interface, and access to device specific properties. Profiles are implemented
on top of a configuration. Both J2ME configurations have one or more associated
profiles. Applications are written for a specific profile, as profiles are assembled for a
specific configuration. Both profiles and configurations define a set of Java API
classes which can be used by the applications. There are many kinds of profiles. Such
as MIDP (Mobile Information Device Profile) is based on CLDC. Foundation Profile
is based on CDC. Personal Basis Profile and Personal Profile are based on Foundation
Profile.
Java Midlets are based on MIDP. They can be called MIDP applications on cell

Background Knowledge

 8

phones. Let us learn more about it. There are currently two versions of MIDP. One is
MIDP 1.0. It defines all the core classes of MIDP applications. Besides the four
packages which are inherited from CLDC. MIDP defines more three packages:

 • javax.microedition.lcdui
 • javax.microedition.midlet
 • javac.microedition.rms

The following is a short introduction of these three packages. The third part of this
thesis will give you more detailed information.
The MIDP has no AWT and Swing component of J2SE. All classes that handle with
user interface are in javax.microedition.lcdui package. It includes
“high-level” APIs and “low-level” API.
As we all know Java applications that run on MIDP devices are known as MIDlets. A
MIDlet consists of at least one Java class that must be derived from the MIDP-defined
abstract class javax.microedition.midlet.MIDlet.
A J2SE application typically stores state in local files that are quickly and easily
accessible from the hard drive .Mobile devices, however, do not have local disks .The
MIDP specification has to provide a persistent storage facility so that information can
be preserved while a MIDlet is not running or when the device is turned off. The
package javax.microedition.rms handles this staff.
The MIDP 2.0 includes many enhancement and additions to MIDP1.0. For example it
includes a set of media APIs and game APIs. It is very exciting for the mobile phones
game developer. The packages that are extended in MIDP 2.0 are listed here:

 • javax.microedition.lcdui.game
 • javax.microedition.media
 • javax.microedition.media.control
 • javax.microedition.pki

The emphasis in my thesis will be MIDP 1.0. If you are interested in MIDP2.0 refer to
this web site: [MIDP2.0]

2.4 Optional Packages
Besides the configuration and profile, the optional packages define also class libraries
for specific usage. We can say that it is the third category of J2ME component. They
are layered on top of a profile. They extend run time environment but are not so
universal like configuration or profile. Some devices support them. Some don’t.
Therefore they are called “optional”. One device can support multiple optional
packages.
Now there are many optional packages to be available. Today there are nearly 80
J2ME-related specifications at various stages in the JCP and many of them define
optional packages. For complete list of optional packages, refer to the web site
[JSR].
The following are short introduction of the more interesting and important optional

Background Knowledge

 9

packages:

• JSR 120 : Wireless Messaging API. It defines APIs that provide access to wireless
 communication resources.
• JSR 135 : Mobile Media API (MMAPI). It defines API that provide access and
 control of multimedia resources.
• JSR 172 : Web Service Specification. It provides access to web services.
• JSR 177 : Security and Trust Services API. These APIs provide security services to
 J2ME devices.
• JSR 184 : Mobile 3D Graphics API. These APIs provide developing and controlling
 of 3D applications.

SVG
When we talk about optional packages, worth noting that now more and more cell
phones support the SVG technology. SVG is abbreviation of scalable vector graphics.
It is XML syntax for rich 2D animated, dynamic and interactive graphics. Here are
some advantages for using SVG.

• First of all, it is scalable, so it adapts to different displays.
• Second it is animated.
• Third, it is interactive to the user.
• Fourth, it allows the user to search for text in the image.

The following are some situations that we use SVG on our cell phones.

• The maps are probably the most important applications.
• We can print your presentations or office documents to SVG and load it into our
cell phones.

Just like J2ME can be seen as a subset of J2SE. The SVG Profile that is used on cell
phones is called SVG Tiny. It is just subset of SVG full. You can visit the following
web site to see how SVG Tiny is defined: [SVGMobile].
In J2ME, there is a java specification request JSR 226 responsible to show and handle
SVG. It builds on top of SVG Tiny. On the following page, you can find the complete
documentation of JSR 226: [JSR226].
As I know, Sun did not until now provide any reference implementation of it. Nokia
did. You can download this implementation on this page: [RIJSR226]
I give you here just a simple introduction of API structure of JSR 226. There are core
part and advanced part. The core part consists of basic graphics operation such as
loading an SVG file, rendering it and zooming. In advanced part you have a direct
manipulation of different elements. For example, in an SVG file you can go to
individual shapes and manipulate them, change their color, update. Rotate downward
and transform them. It can be shown in the following figure. It comes from the
learning program of Sun Microsystems: [JSR226Nokia].

Background Knowledge

 10

Figure 2: JSR 226 AP

Development Environment

11

3 Develoment Environment

3.1 Download

Figue 3: Standard Development Process of Java Midlet

This figure shows us a standard development progress of a java midlet. The whole left
part we should do it in our PC. Code writing, compiling we are already very familiar
with, the difference of midlet development and normal java applet development is
preverifing. For regular Java programs, verification is performed by checking whether
or not it remains stable during execution. But Because J2ME is designed for small
devices with limited memories, much of the usual Java verification has been removed
from the virtual machine. As a result, it is necessary to preverify your J2ME
application before deployment. Thus all we must do at run time is to make sure that
the class has not changed since preverification. That saves a lot of time. To do all
these jobs, what do we need in our computer?

1) J2SE SDK
First of all we need the J2SE SDK (You will sometimes hear developers refer to this
as the JDK, or Java Developer's Kit, but the current name is J2SE SDK.). J2ME
Wireless Toolkit runs upon the java platform it provides and it includes a Java
compiler.
It can be downloaded from this page: [JSDK].

2) WTK
We need J2ME platform, CLDC, MIDP and an Emulator. Sun Microsystems provides

Development Environment

 12

a J2ME Wireless Toolkits (I will refer it as WTK later) for J2ME developer. It consists
of build tools, utilities, and a device emulator. Or you can use what the device
manufacture provides.
It can be downloaded from this page: [WTK].

3) IDE: ECLIPSE AND ECLIPSE ME
Actually WTK already provides a set of J2ME development tools. But most developer
used to using integrated development environment. It really provides much
convenience. I choose here a free and open source IDE: Eclipse. To use Eclipse to
develop Java Midlet, we need a plugin -- EclipseME.
You can download Eclipse from this page: [ECLIPSE].
And EclipseME from this page: [EclipseME].

3.2 Installation and Integration
The installation is easy. After the installation we have still two integration jobs to do.
First integrate ECLIPSEME to ECLIPSE. Second integrate WTK to ECLIPSE.

1) ECLIPSE and ECLIPSEME
You can visit this web page to see the Steps to integrate Eclipse and EclipseME:
[EclipseMEIn].

2) Eclipse and WTK
After restarting of Eclipse, the system will automatically guide you integrating WTK
to Eclipse, just press “Next” until last dialog window, then press Finish.
If the plug-in is properly installed, you will find this result when you select
Windows�Preference�Device Management
Notice: If the system does not start this progress automatically, just click the “Import”
button in the following dialog window and do what the system ask you to
do.

Development Environment

 13

Figure 4: WTK Properly integrated into EclipseME

3) Midlet project creation
Now we have all of the development environments installed. We try to create a midlet
project now. It is just like creating a java package. The difference is if you select
File�New�Project, there is an option J2ME. Choose J2ME� J2ME Midlet Suite.
Then we create in this package a new class. Select New�Others�J2ME�J2ME
Midlet.
You can visit this site to see the whole steps: [MidCreation].

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class Hello extends MIDlet{

private Display display;

public Hello(){

display =Display.getDisplay(this);

 }

public void startApp(){

TextBox t = new TextBox("Hello","Hello",256,0);

display.setCurrent(t);}

public void pauseApp(){}

public void destroyApp(boolean unconditional){}

}

Development Environment

 14

I write here a piece of code, the result is to show “Hello” on the screen of the cell
phones. To run this midlet in the emulator, choose “Run” from the “Run” menu.
Here is the result

Figure 5: Hello.jar on Cell Phone Emulator

4) Now it’s time to package. That can be done very easily in Eclipse. Right click on
the project name in the Package Explorer, and select "J2ME | Create Package". A new
folder which is called “deployed” will be then created. In this folder are there two
files – a JAR file and a JAD file.
The pre-verified class files in the "verified" directory and the resource files in the
"res" directory are included in the JAR file. You maybe are not familiar with JAD file.
All the packaging information that tells the device what is in the JAR must be
supplied in the JAR's manifest file. In order to make use of this information, however,
the device must download the whole JAR file and extract the manifest. After that the
manifest the MIDlet-Name, MIDlet-Version, and MIDlet-Vendor attributes and the
optional MIDlet- Description can be showed to us. These attributes allow the user to
decide whether the MIDlets should be installed. However, the JAR for a MIDlet suite
might be quite large. To save time and money some of the attributes from the manifest
file, together with extra information, is duplicated in the JAD file. Instead of
downloading the whole JAR, a MIDP device first fetches its JAD file, which is much
smaller than the JAR and can be transferred quickly. The device then displays the

Development Environment

 15

JAD file's contents to the user so that she can decide whether to fetch the JAR file.
The JAD contains some attributes that come from the manifest file and others that do
not appear in the manifest. The common attributes are as follows:

Figure 6: Example of JAD File

5) Deploy the midlet
Until now all we must do in our computer has been done. The next step is to deploy
our midlet jar file to the device. There are several ways to do that.
 • Through cable
 • Through BlueTooth
 • OTA
The first two ways are different from device to device. You can look up the concrete
steps in the manual that the device producer provides you. The third way OTA is the
abbreviation of “Over-the-Air”. First put the JAD file and JAR file on a web server
which supports Java Midlet, then download it from our cell phones:
We can also do it on the Sun J2ME Wireless Tollkits.

a) Choose “Start � Programm � J2ME Wireless Toolkits 2.2 � OTA provisioning”
b) Press “Apps” and select “Lauch”
c) Enter the URL to the page containing the link to JAD file and press “Go”.
d) When the page is displayed, you can choose which JAD file to open. Then press
“Install”.
e) JAD file is displayed. The name of the application, its size, version, vendor and the
full location of it JAR file are displayed. You can choose to cancel the installation or
to install it.
The real device works in the same way. You point its browser directly to JAD file and

Development Environment

 16

the device lets you choose if you wish to install the package. If you wish to, it will
download the JAR file and install it.

Packages in MIDP and CLDC

17

4 Packages in MIDP and CLDC

In this part, I will give a short introduction to the three basic class packages in
MIDP1.0:

• javax.microedition.midlet
• javax.microedition.lcdui
• javax.microedition.rms

and one important package in CLDC:

• javax.microedition.io

4.1 Package javax.microedition.midlet and lifecycle control
I have already talked about the OTA provisioning of a java midlet. This process is
controlled by the AMS (Application Management Software) of the cell phones. AMS
not only control the download and installation of java midlets. It also controls the
lifecycle of a midlet. In a Midlet suite there must be a class that derives from the
abstract basic class javax.microedition.midlet.MIDlet. There are three
abstract methods (startApp(),pauseApp(),destroyAPP()) in this class, all
midlets that extend this class must implement these three methods. AMS just control
the execution of a Midlet by calling these 3 methods.
A MIDlet is always in one of three states: paused state, active state, or destroyed state.
When a MIDlet is loaded, it is first in its paused state. Its public, no-argument
constructor is invoked. If the MIDlet throws an exception during the execution of its
constructor, the MIDlet will be destroyed. If the MIDlet does not throw any exception,
AMS calls startApp() method and its state is changed from paused to active. The
active state is the functional state. Every MIDlet wants to be in this state! This is
when the MIDlet can do its functions, possess the device resources and , do whatever
it wants to do. But if necessary , AMS can at any time put a MIDlet into the paused
state by calling the method pauseApp() . On a cell phone, for example, this might
happen when a call comes and the software needs to set the phone's display free so the
user can answer the call. What a midlet should do in his paused state depends on what
you write in the pauseApp() method. But generally, it should release any resources
it is holding and save the current state so it can restore itself when it is reactivated
later. When you finished this call, AMS will call the startApp() again so that the
Midlet enters the active state again. Be careful here, the active state can be entered
again and again, anything that should only be initialized once, you should do it in the
constructor. When AMS decide to terminate a MIDlet, it calls the MIDlet's
destroyApp() method. It can be done whether the midlet is in paused state or
active state. Interesting here is this method has a Boolean argument. If it is true, the
MIDlet should release all the resources that it has allocated, terminate any background
threads, and stop any active timers. If it is false, the MIDlet can indicate that it wants
to continue by throwing a MIDletStateChangeException.

Packages in MIDP and CLDC

 18

4.2 Package javax.microedition.lcdui and user interface system
When we talk about user interface, first we thought we could use the subset of
Abstract Windows Toolkits or Swing component from J2SE. But it turns out
impossible because of the limited memory and processor resources. On the other hand,
cell phone users do not expect to be able to work with more than one window at the
same time since the screen size is limited. So J2ME expert group introduced several
classes that are much simpler and screen-based. All those classes are in the package
javax.microedition.lcdui. They are grouped into two categories:
High-level APIs which are subclasses of abstract class Screen and low-level APIs
which are subclasses of abstract class Canvas. Before I begin to introduce the user
interface, I will take a simple program to explain the high level Event handling
mechanism in J2ME. Look at this piece of code.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HLEventMidlet extends MIDlet implement s

CommandListener {

 private Command exitCommand;

 private Command info1Command;

 private Command info2Command;

 private Display display;

 public HLEventMidlet() {

 display = Display.getDisplay(this); // get a DISP LAY object

 exitCommand = new Command("Exit", Command.SCREEN, 1);

 info1Command = new Command("Info1", Command.SCREE N, 2);

 info2Command = new Command("Info2", Command.SCREE N, 2);

 }

 public void startApp() {

 TextBox t = new TextBox("Hello MIDlet", "Test str ing", 256,

0);

 t.setCommandListener(this);

 t.addCommand(exitCommand);

 t.addCommand(info2Command);

 t.addCommand(info1Command);

 display.setCurrent(t);

 }

Packages in MIDP and CLDC

 19

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

 public void commandAction(Command c, Displayable s) {

 if (c == exitCommand) {

 notifyDestroyed();

 } else if (c == info1Command) {

 notifyDestroyed();

 }

 }

}

As we know, a MIDP device displays only a single “window” at a time. We say that
even though there is more than one MIDlet running in a device at the same time, only
one of them can have access to the screen. Here we use the Display class. Usually a
Midlet invokes the static method getDisplay(Midlet m) in his constructor or
startApp() method to get a Display object
.
display = Display.getDisplay(this); // get a DI SPLAY object

This method has an argument Midlet, usually is this, the midlet itself. That means at
this time this Midlet has the right to access the screen. What does it show? Usually the
midlet in his starApp() method produce a Displayable Object. In this example is
Textbox, which is subclass of the class Screen.

TextBox t = new TextBox("Hello MIDlet", "Test strin g",256, 0);

// at this time, a TextBox will be showed on the sc reen

And Screen is the subclass of Displayable . And we use the instance method
setCurrent().

display.setCurrent(t); // allocate for this s creen

// a displayable object

This method has an argument which is a Displayable object. In this example is
this Textbox . That means at this moment this t (TextBox) should be on the screen.
We will see it is like a string. On the other hand, as a Displayable object. T can also
invoke addCommond() method. You can just imagine a Command is a menu. The
user can select one from them. T also can invoke the method
setCommondlistener() . The argument is of the class Commandlistener .
That means if one of the commands is selected, the actionCommand() method of

Packages in MIDP and CLDC

 20

this Commandlistener will be executed. In this example, the
Commandlistener is the Midlet self. So let us see the result

Figure 7: LCDUI Example (TextBox)

First, the textbox show on the screen. If we click “Menu” there will be three choices
that we can choose. We select exit, the actionCommand() method of this method
will be executed and the whole midlet will be terminated. This is a very simple but
very typical high level event handling in Midlet. All high level interfaces interact with
user in this way. There are four this kind of classes in the package
javax.microedition.lcdui -- List , Alert , Textbox and Form . They are
easy to handle but can not control the exact look of the Midlet. On opposite, using low
level interface you can draw everything on the screen. But it is relative complicate.
The class Canvas is the basic building block of the low-level API. It is an abstract
class. To use Canvas , you have to subclass it and implement the paint() method.
This method gets an argument, which is an instance of another low-level API class
called Graphics . Graphics class provides methods that allow you draw whatever
you want. Check this example code out

public class SimpleCanvas extends MIDlet {

 private Display display;

 public SimpleCanvas() {

 display = Display.getDisplay(this);

 }

 public void startApp() {

 MyCanvas mc = new MyCanvas();

 display.setCurrent(mc);

 }

Packages in MIDP and CLDC

 21

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

}

class MyCanvas extends Canvas {

 public void paint(Graphics g) {

 g.setColor(255, 255, 255);

 g.fillRect(0, 0, getWidth(), getHeight());

 g.setColor(255, 0, 0);

 g.drawString("Hello", 10, 10, 0);

 }

}

We say that if we give the setCurrent() method an instance of Canvas as
argument.

display.setCurrent(mc) ; // inv oke

//mc.paint(Graphicsg)

The midlet will invoke the paint() method of this object automatically and give it
an Graphics as argument. In this example, we first clear the screen using the
method setCollor().

g.setColor(255,255,255) ; // clear th e whole screen

Then we make the whole screen white.

g.fillRect(0,0,getWidth(),getHeight()) ; // make t he screen white

The third argument here we use the method getHeight () and getWidth() of
Canvas class to get the whole displayable area.

g.drawString("Hello",10,10,0) ;

This line means we draw a string on the area.

g.setColor(255,0,0) ;

And this means we set at first the color of the string.
Here is the result

Packages in MIDP and CLDC

 22

Figure 8 : Canvas Example

This is typical usage of Canvas class. Using Graphics Object, we can draw a line,
draw a rectangle, draw an arc, and even an animation. In addition to the class Canvas
there is also an important class in low level user interface API: Image. Simply saying,
you can use the static method createImage() (there are four of them with
different arguments) to create a immutable or mutable Image und use the method from
Graphics drawImage() to draw it.

4.3 Package javax.microedition.rms and record management
Rms is the abbreviation of Record Management System. It provides methods that
Midlet can use to save information. It is just like a small Database Management
System. We know that in a general DMS, there exist a lot of tables. In RMS is there
something that plays the same role which is called Record Store. As its name implies,
a Record Store is a collection of records. In one Midlet suite, a record store has a
unique, case sensitive name. Different Midlets in a same Midlet suite can share the
same Record store. Midlets that from different Suite can not share record stores. Each
record in a record store is an array of bytes and has a unique integer identifier. As I
said, all classes or interfaces that handle information storage are in this package.
There are

• 2 Classes : RecordStore , RecordEnumeration
• 3 Interfaces : RecordComparator, RecordFilter, RecordListener
• 5 Exceptions : InvalideRecordException, RecordStoreException,
 RecordStoreFullException,

RecordStoreNotFoundException
 RecordStoreNotOpenException

The most important class in this package is RecordStore . It provides several
methods to manage such as insert, update, and delete records in a record store. The

Packages in MIDP and CLDC

 23

interface RecordComparator defines a compare method to compare two
candidate records. The RecordEnumeration interface is responsible for
enumerating records in a record store. The MIDlet implements the RecordFilter
interface, defining a filter that examines a record to see if it meets application-defined
criteria. Here is a simple example

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.rms.*;

public class RecordStoreTest extends MIDlet impleme nts

ItemStateListener {

 private Display display;

 public RecordStoreTest() {

 display = Display.getDisplay(this);

 }

 public void startApp() {

 String dbname = "testdb";

 Form f = new Form("RS Test");

 RecordStore rs = openRSAnyway(dbname); // open th e RS testdb

 if (rs == null) {

 f.append("Table open fail");

 } else {

 try {

 f.append("Last modified :" + rs.getLastModified ());

 f.append("\nRS Name :" + rs.getName());

 f.append("\nNext ID :" + rs.getNextRecordID());

 f.append("\nRecord num :" + rs.getNumRecords()) ;

 f.append("\nSize :" + rs.getSize());

 f.append("\nAvaliable Size :" +

rs.getSizeAvailable());

 f.append("\nVersion :" + rs.getVersion());

 rs.closeRecordStore();

 deleteRS(dbname);

 } catch (Exception e) {

 }

 }

 display.setCurrent(f);

 }

 public void pauseApp() {

 }

Packages in MIDP and CLDC

 24

 public void destroyApp(boolean unconditional) {

 }

 public void itemStateChanged(Item item) {

 }

 public RecordStore openRSAnyway(String rsname) {

 RecordStore rs = null;

 if (rsname.length() > 32)

 return null;

 try {

 rs = RecordStore.openRecordStore(rsname, true);

 return rs;

 } catch (Exception e) {

 return null;

 }

 }

 public boolean deleteRS(String rsname) {

 if (rsname.length() > 32)

 return false;

 try {

 RecordStore.deleteRecordStore(rsname);

 } catch (Exception e) {

 return false;

 }

 return true;

 }

}
First we try to open a recordstore

RecordStore rs = openRSAnyway(dbname) ;

We define the method opRSAnyway() as following:

rs = RecordStore.openRecordStore(rsname,true) ;

The second parameter means that if the recordstore that we try to open does not exist,
create one. Then we use some methods in the class RecordStore to get some
attributes of this recordstore and show it on the screen:

rs.getLastModified()

rs.getLastModified()

Packages in MIDP and CLDC

 25

rs.getNextRecordID()

rs.getNumRecords()

rs.getSize()

getSizeAvailable()
rs.getVersion()

In the end, we use

rs.closeRecordStore();

to tell the AMS that the thread that we are using does not use this Recordstore any
longer. If we do not use this RecordStore itself any more, we use

deleteRS(dbname) ;

to delete it. Here is the result that appeared on the screen:

Figure 9: Example using RecordStore

4.4 Package javax.microedition.io and generic network system
Again because of the limited resource we must give up the java.net API that supports
connection in normal J2SE application. J2me provides a collection of API to support
for connection types which are in the package javax.microedition.io . Here is
an example for using the HttpConnection :

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.io.*;

import java.io.*;

public class HttpTest extends MIDlet {

Packages in MIDP and CLDC

 26

 private Display display;

 public HttpTest() {

 display = Display.getDisplay(this);

 }

 public void startApp() {

 try {

 String url = "http://www.uos.de";

 HttpConnection hc =

(HttpConnection) Connector.open(url);

 DataInputStream dis =

 new DataInputStream(hc.openInputStream());

 String content = "";

 int ic;

 while ((ic = dis.read()) != -1) // read the sour ce code

 {

 content = content + (char) ic;

 }

 Form f = new Form("HTTP Test");

 f.append(content);

 display.setCurrent(f);

 } catch (Exception e) {

 System.out.println(e.getMessage());

 notifyDestroyed();

 }

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

}

First we use

HttpConnection hc;

hc = (HttpConnection)Connector.open(url);

to get the contact with the web site, then we get a DataInputStream from this
HttpConnection object.

DataInputStream dis;

dis = new DataInputStream(hc.openInputStream());

Packages in MIDP and CLDC

 27

Then we use the method read() to read the source code of this web site.

while((ic = dis.read())!=-1) //read the sour ce code

content = content + (char)ic ;

Finally we put all the source code on the screen:

f.append(content) ;

The result is showed as following :

Figure 10: Example using HttpConnection

All the classes in this package can be organised as a network

Figure 11 : The hierarchy architecture of the package javax.microedition.io

At the top of the interface hierarchy is the Connection interface, the most basic
type of connection - all other connection types implement Connection . As you
move down the hierarchy, connections become more complex and functional. For
packet-based I/O the GCF defines DatagramConnection , and for stream-based
I/O InputConnection, OutputConnection, StreamConnection , and
ContentConnection. Note how StreamConnection implements both
InputConnection and OutputConnection. At the bottom of the hierarchy is

Packages in MIDP and CLDC

 28

the ContentConnection, a special type of StreamConnection that provides
content-specific information such as data length, content type, and data encoding.
Finally, the StreamConnectionNotifier enables an application to wait for
incoming stream connections, asynchronously.

Google maps on cell phones

29

5 Google maps on cell phones

5.1 Introduction
This part is a project report. The goal of this project is to develop a MIDP application
(Java Midlet) that can show google maps on mobile phones. This project intends to
investigate, design, implementation and evaluation of the developed application using
today mobile technologies.

5.2 Project Aims
•Given a cellular phone. Enter the name of a city and show a map of the

surroundings on the display.
•Navigate north, west, south and east.
•Zoom into and Zoom out of the map.

5.3 Report Outline
The reminder of this part will be divided into 5 sections:
Section 5 analyzed the system requirements and the ideas to solve the main problems.
Section 6 considered the possible system architecture including the user interface

system.
Section 7 discussed how the system was implemented including some important

steps and main algorithm that I used.
Section 8 discussed how the system was tested and the result.
Section 9 is the last section of this report. It listed difficulties that I have encountered

during the implementation and the future work that could be done to
extend the system even further.

5.4 System Analysis
Before software is designed, the first thing we should do is the requirement analysis.
For this midlet, that includes the following questions:

1) What is Google Maps and what can we do with it?
For this question, you can visit the following web address: [GoogleMaps].
Google Maps is a powerful online mapping technology. By visiting this web address,
you can search for a business location .For example, if you search for “Pizza in New
York”, you can get a list of pizzeria in New York including contact information from
the system and the map of them. On this map you can navigate, zoom in, zoom out
and also drag it to view the adjacent sections immediately.

2) How I fulfill the supposed tasks
My main job is: Given a name of a city, and show the map of it. So the most
important thing is to find out the relationship between the city name and the map
image.
If you use Opera browser to visit the Google Maps, you will find that the map that

Google maps on cell phones

 30

presents you is not a whole block. It consists of several PNG images which consist of
256*256 pixels. This is an example of the web address of such an image:
http://mt0.google.com/mt?n=404&v=w2.11&x=0&y=0&zoom=17
At this time, the zoom is at the largest. Now the whole world is a whole image. When
the zoom minus 1, the whole world is separated into 4 images, the addresses of these
4 images are:

http://mt0.google.com/mt?n=404&v=w2.11&x=0&y=0&zoom=16
http://mt0.google.com/mt?n=404&v=w2.11&x=1y=0&zoom=16
http://mt0.google.com/mt?n=404&v=w2.11&x=0&y=1&zoom=16
http://mt0.google.com/mt?n=404&v=w2.11&x=1&y=1&zoom=16

From this I can infer that if we get the address of the center image as following

http://mt0.google.com/mt?n=404&v=w2.11&x=m&y=n&zoom=z

The addresses of adjacent images are:

http://mt0.google.com/mt?n=404&v=w2.11&x=m-1&y=n&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m+1&y=n&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m&y=n-1&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m&y=n+1&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m-1&y=n-1&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m-1&y=n+1&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m+1&y=n-1&zoom=z
http://mt0.google.com/mt?n=404&v=w2.11&x=m+1&y=n+1&zoom=z

This is very important for the algorithm for navigating, zooming in and zooming out
of our map. Now the question is if I know the name of the city, how I can know the
address of the center image. Every location in this world has its own and single
latitude and longitude. If I can find the relationship between the latitude longitude
coordinate system and the coordinate system that the google maps use, we can find
the address of the center image for a certain city.
In order to fulfill the supposed tasks, I must know
a) How could we get the latitude and longitude of the city according its name.
b) How to get the address of the center image if knowing the latitude and longitude.
c) The way to get the adjacent image, navigate our map and zoom in, zoom out

3) This is a kind of complicated software. A single thread is not enough. We must
allocate multiple threads to deal with all of the tasks.

5.5 System Design
4.5.1 User interface system
The following flow diagrams show how the proposed system’s user interface works.

Google maps on cell phones

31

The proposed system’s user interface will be constructed using menus

S t a r t H e l p P a g e

O K

S e a r c h M e n u

O K

E r r o r P a g e

O K

M y C a n v a s

Z o o m I n
Z o o m O u t

N e w S e a r c h

E n d

M a i n M e n u

H e l p
S e a r c h

S h o w E r r o r
E x i t

Figure 12 : Flow diagram of the user interface system

About the user interface system:
At first, the user should see the main menu. There are four choices available, if we
choose “Help”, a HelpPage will be shown on the screen. It is a usage manual of this
program. If we choose “show error”, the system will show us the happened errors.
And we can choose “OK” from these two pages to get back to the main menu. If we
choose “search” from the main menu, the search menu will be shown on the screen.
There will be a text field so that the user can give the system the name of the city, and
if we choose “OK” from this menu, a MyCanvas object will be shown on the screen.
It is the google map of this city and its surroundings. It is also a menu, with the
choices “Zoom In” and “Zoom Out” we can zoom into and zoom out of the map and
if we choose “New Search”, a new Search Menu will appear to be ready for a new
search.
The above flow diagram has shown all major screen displays.

4.5.2 Functional Part
The following sequence diagram show the process that from the name of the city that
we give to get the map image that we need to be downloaded. It will be implemented
through 4 classes: SearchMenu, CenterCalculator, MyCanvas,
TileDownloader

Google maps on cell phones

 32

: S e a r c h M e n u : M y C a n v a s : T i l e D o w n l o a d e r: C e n t e r C a l c u l a t o r

g e t L a t L o n g ()

g e t C e n t e r A d d r e s s ()

r e t u r n C e n te r A d d r e s s

s e t C e n t e r ()

g e t M a p T i l e ()

r e t u r n M a p T i l e

P a i n t ()

Figure 13: Sequence diagram of the process of getting map tiles

In the class SearchMenu , there will be a text field so that the user can give the city
name for searching. Then in this class with a certain method the program will get the
latitude and longitude values of this city. Then it passes these two values to the class
CenterCalculator and gets in this class the address of the center map tile. Then
it passes this address to the class MyCanvas through the method setCenter().
In the class MyCanvas, the addresses of all adjacent visible tiles will be calculated.
And they will be sent to the class TileDownloader, this class will help to
download all of the map tiles.

4.5.3 Major classes
The following is the class diagram of the whole major classes in our system

Google maps on cell phones

 33

M ainM id let

+ ram M anager:Ram M anager
+ th readM anager1 :T hreadM anager
+ th readM anager2 :T hreadM anager
+canvas:M yC anvas
+db:M yRecordS tore
+ td :T ileD ow nloader
+m ainM enu:M ainM enu
+searchM enu:SearchM enu
+helpPage:H elpPage
+errorPage:E rrorPage

+quit():void
-c leanup():vo id
+debug(info:O bject):void

javax.m icroedition.m id le t.M id let

+startA pp():void
+pauseA pp():void
+destroyA pp(unconditional:boo lean):vo id

javax.m icroedition.lcdui.Form

+append(im g:Im age):in t
+append(item :Item):int
+append(str:S tring):int

+delete(item N um :int):vo id
+get(item N um :int):Item

H elpPage

-m id:M ainM idlet

SearchM enu

-m id:M idL et
-zoom :int
+cam eFrom :D isplayable

+clear():void
+subm itSearch(city:S tring):void

ErrorPage

-m id:M ainM idlet

<< in terface >>
javax.m icroedition.lcdui.Com m andL istener

+com m andA ction(com m and:C om m and,d isp layab le:D isplayble):void

 has

has

 has

1 1

1

1

1

1

M yC anvas

-m id:M idle t
-x:in t
-y:in t
-xV alue:doub le
-yV alue:doub le
-zoom :in t
-coord inate:C oordinate

+setCenter(co:Coord inate):void
+m oveV iew (x :int,y:int):void
+zoom In():vo id
+zoom O ut():vo id
+paint(g:G raph ics):void

javax .m icroed ition .lcdu i.C anvas

+paint(g:G raph ics):void
+ repain t():vo id
+keyPressed(keyCode:int):vo id
+keyR epeated(keyC ode:int):void

1 1

T ileD ow n loader

-m id :M id le t
-db :M yR ecordSto re

+getT ile(xyz:X Y Z):T ile
+dow nload(tile :T ile):vo id
+shouldD ow n load(m t:T ile):boo lean

Figure 14 : Class diagram of all major classes of our system

5.6 System Implementation
In this Midlet suite are there 15 classes. They can be categorized into

1) The assistant classes
 . Coordinate.java
 . FixedByteArrayOutputStream.java

. LinkedHashtable.java

. MyRecordStore.java

. RamManager.java

. ThreadManager.java

. Tile.java

. XYZ.java

2) The major classes
 . MainMidlet.java
 . MainMenu.java

. HelpPage.java

. SearchMenu.java
 . MyCanvas.java

. TileDownloader.java

. ErrorPage.java

Google maps on cell phones

 34

The classes in the first category deal with some assistant jobs, just like their name
imply, they manage the RAM distribution, thread distribution, the images of the map
storage and so on.
The classes in the second category are in charge of the so called “main jobs”. It
includes all user interface classes and all of the classes that are involved in the
progress that from the name of the city to get the address of the center map image just
like we have discussed already. This paper put emphasis on this part and will explain
the important steps of all classes in the order of flowing.

MainMidlet

As we know, in one midlet package is there only one midlet. In this case, it is the class
MainMidlet. It controls lifecycle of the whole project.
In the constructor of this class, all of the objects that are related to this mildet are
initialized

canvas = new MyCanvas(this);

db = new MyRecordStore(this);

td = new TileDownloader(this);

mainMenu = new MainMenu(this);

searchMenu = new SearchMenu(this);

helpPage = new HelpPage(this);

errorPage = new ErrorPage(this);

In the startApp() of this class is there a line of code

display.setCurrent(mainMenu);

That means at this time, this mainMenu object is shown on the screen.
In the method pauseApp(), I invoked the method cleanup()

cleanup();

In the method cleanUp() , I invoked the methods

db.compact();

db.closeRMS();

These two lines of code mean if the midlet is in the paused state, its record store will
be cleaned up and closed.
In the method destroyApp() , the following methods are invoked

if (!clean) cleanup();

notifyDestroyed();

Google maps on cell phones

 35

That means in its destroyed state, the midlet will clean up and closed its record store
and notify the AMS to destroy it.
MainMenu

The class mainMenu is subclass of the class Form. It implements also the interface
CommandListener. Here is the major part of the constructor of mainMenu :

setCommandListener(this);

addCommand(new Command(SEARCH, Command.SCREEN, 1));

addCommand(new Command(HELP, Command.SCREEN, 2));

addCommand(new Command(EXIT, Command.EXIT, 4));

That means there will be some choices available on the screen, if we choose one, then
the corresponding code in the method commandAction in this class will be invoked.
For example, if we choose “search”, then these two lines of code will be executed:

mid.searchMenu.cameFrom = this;

mid.display.setCurrent(mid.searchMenu);

A searchMenu object will be shown on the screen.
If we choose “help”, a HelpPage will be shown on the display.
If we choose “show error”, an ErrorPage will be shown on the display.

HelpPage and ErrorPage
These two classes are similar. They are both subclass of Form. The HelpPage
presents us operation instructions of this program. Obviously it is very easy to
implement. The ErrorPage shows us the errors and exceptions that appeared. First,
in the class MainMildlet, we construct a vector and use it to collect all the
exceptions
final Vector log = new Vector();

log.addElement(message + "\n" + exception + "\n---- -\n");

Then in the class MainMenu, I enumerated the vector and store all the error
messages into a StringBuffer , and then write all of the messages on the display:

StringBuffer sb = new StringBuffer();

for (Enumeration enumeration = mid.log.elements() ;

enumeration.hasMoreElements() ;) {

 Object o = enumeration.nextElement();

 sb.append(o.toString());

 sb.append('\n');

if (sb.length() == 0)

sb.append("No events logged.\nEverything is OK.");

Then I construct an ErrorPage object and put this error page on the screen

Google maps on cell phones

 36

ErrorPage error = new ErrorPage(mid,sb);

mid.display.setCurrent(error);

In the constructor of the class ErrorPage is there such a line of code:

append(sb.toString());

That means the system will put all of the error messages that has happened until this
moment on the screen.

SearchMenu

The searchMenu class is also the subclass of Form. In this class, we can also get
the latitude and longitude according to the name of the city that we gave. Its
constructor is so:

setCommandListener(this);

addCommand(new Command(BACK, Command.BACK, 1));

addCommand(new Command(OK, Command.ITEM, 1));

append(city = new TextField("City Name", "", 200, T extField.ANY));

So a TextField will be on the screen. At beginning it is blank, what the user writes
will then assigned to the variable city. And there also are several choices available. If
we choose “OK” from them

String stringCity = city.getString();

submitSearch(stringCity);

will be executed. The program invokes the method submitSearch() and the
parameter will be the city name that the user just gave.
In the method submitSearch(), first the latitude and longitude of the city will be
found.
First let’s analyze the parameters that show in the address of a google map tile, for
example if we search for the city “New York”, the address is
http://maps.google.com/maps?hl=en&q=new+york
After the question mark, “hl = en” means that the language that we use is English.
“&q=new+york” is quite clear. And I found that if we put the parameter
“&output=html” after this address, like

http://maps.google.com/maps?hl=en&q=new+york&output=html
We will find the latitude and longitude of corresponding city in the source code
(javascript) of this webpage. They just follow the keywords “map.setCenter(new
GLatLng(“. For the case “New York”, that would be:

Google maps on cell phones

 37

map.setCenter(new GLatLng(40.714167, -74.006389), z oom)

So in the method submitSearch() , first we replace all of the spaces in the name
of the city with “+”.

String rep = city.replace((char)32,'+');

Then we determine the url fort his city
final String url = "http://maps.google.com/maps?f=q &hl=en&q=" +

rep + "&output=html";

And then we get the contact with the web page using HttpConnection in the package
javax.microedition.io.

HttpConnection httpconnection =

(HttpConnection)Connector.open(url);

InputStream in = httpconnection.openInputStream();

We use the following code to get the source code (javascript) of the webpage and
convert it to a String s

StringBuffer ss = new StringBuffer();

for (;;) {

 int c = in.read();

 if (c == -1) break;

 ss.append((char)c);

 }

String s = ss.toString();

The following is quite simple. We should analyze this String s and in this string find
the location of the keyword „GLatLng” and then get the latitude and the longitude
value that follow this keyword. The codes are quite much but the idea is quite clear.
So I will not give the source code here.
Until now the latitude and longitude of the city are already known. What we should
do next is to get the address of the center map image according to the latitude and
longitude value. This step is implemented in the class CenterCaculator. The
method submitSearch in the class SearchMenu invoked

 Coordinate coordinate = new Coordinate(0,0);

 coordinate =

CenterCalculator.getTileCoordinate(fiLatitude,fiLon gitude,logV

alue,zoom);

to transfer the latitude and longitude value to the class CenterCalculator.

Google maps on cell phones

 38

CenterCalculator

The coordinate system that google maps is using in its javascript is mercator system.
When we know the latitude and longitude of certain city, we can calculate the x and y
value of this city in mercator coordinate system. We already knew that each map tile
is a 256*256 pixels square. If we divide x and y value by 256, we can get the address
of the center image. You can find the javascript implementation of this process here:
[JMapJS].
And I found the java variation of this algorithm in this page: [LaLoToTile].
The difference is this java code use Math.log() which is not available in the MIDP
2.0. So I use a PHP proxy to compute the logarithm and use again
HttpConnection to get the value.
The class CenterCalculator gets the address of center image for certain city and
give this value back to the class searchMenu. The class searchMenu then
invokes the following two methods:

mid.canvas.setCenter(coordinate,zoom);

mid.display.setCurrent(mid.canvas);

Now the object MyCanvas is shown on the screen and which map tiles should be
displayed are determined by the method setCenter() .

MyCanvas

The algorithm to navigate the map and zoom in, zoom out is implemented in this class.
Several methods are involved in this process including paint(), moveView(),
zoomIn(), zoomOut() . The most important method is paint(). The following are
major codes of paint() .
First, we get the x and y value for the center image:

this.xValue = coordinate.x;

this.yValue = coordinate.y;

Then we magnify this value

this.x = (((int)xValue << 7) + (w/2)) << zoom;

this.y = (((int)yValue << 7) + (h/2)) << zoom;

This is because if I want to navigate the map, I can not simply change the x and y
value of the image. I mean if I replace x with x+1, then the whole image will be
replaced. The canvas of the cell phone will be repainted with a totally different map
tile. Such change is too distinct. I magnify x and y value so that the change will be not
so great. The way that I magnify the x and y value I borrowed it from Gmapviewer.
[GMapViewer].

Then in the method paint() :

Google maps on cell phones

 39

final int sx = (x >> zoom) - (w / 2);

This sx means the screen x position.

final int xpos = sx >> 7;

The xpos represents the x value of center iamge.

final int xoff = (2*sx) % 256;

The xoff is the position from which that I draw the image. For example, when xoff = 8,
I will draw the image from the 8th pixel. The whole image is 256 pixels. So the weight
of the image that is shown on the screen will be 248. That is useful when I navigate
the map. “% 256 “means that this value should be fewer than 256. Because if it is
larger than 256, we can totally repaint the canvas with the image whose x value is
x+1.

final int tw = 2;

final int th = 3;

Because the weight of the cell phone’s screen is 240, the weight of the image is 256,
the height of the screen is 289, the height of the image is 256, so the maximal tiles
that can show on the screen at the same time is 2*3 = 6.

XYZ[] visible = new XYZ[tw * th];

 int nVisible = 0;

 for (int ty = 0; ty < th; ty++) {

 for (int tx = 0; tx < tw; tx++) {

 XYZ xyz = new XYZ(xpos + tx, ypos + ty, zoom);

 if (computeTileVisiblePixels(xyz, sx, sy, w, h) > 0) {

 visible[nVisible++] = xyz;

 }

 }

 }

I create an XYZ array and store all XYZ of the visible tiles into it. Whether the tile is
visible we use the method computeTileVisiblePixels(xyz, sx, sy, w, h) .
Then in a for circle, I first get all of the map tiles

Tile mt = mid.td.getTile(xyz);

And then draw all the visible tiles

Google maps on cell phones

 40

int tx = (xyz.x * 256) - ((xpos *256) + xoff);

int ty = (xyz.y * 256) - ((ypos * 256) + yoff);

g.drawImage(image, tx, ty, Graphics.TOP|Graphics.LE FT);

Also worth noting is the method moveView(int movx, int movy) implement
the navigation of the map. In this method, we change the value of x and y, so that sx
and sy will be changed

int speed = 8;

 movx *= speed;

movy *= speed;

 x = x + (movx << zoom);

 y = y + (movy << zoom);

The xoff and yoff will be a multiple of 8, but between 0 and 256. For example if we
move to right 1 step, the xoff will be +8, and it seems that the image move to left 8
pixels. We implement move in this way.

TileDownloader

We already learned that we use method getTile() in the class MyCanvas to get the
map tiles:

Tile mt = mid.td.getTile(xyz);

This method is from the class TileDownloader . In this method we tried to find the

corresponding map tiles on the record store. If we could not find it, we create a new map tile

and put it on the store:

mapTile1 = (Tile)db.get(xyz);

 if (mapTile1 == null) {

 mapTile1 = new Tile(xyz);

 db.put(mapTile1);

 }

Then we invoke the method,

download(mapTile);

In the method download() ,we get contact with the web using class
HttpConnection

String url = "http://mt.google.com/mt?n=404&v=w2.10 &x=" + x +

"&y=" + y + "&zoom=" + zoom ;

 ContentConnection conn = null;

 InputStream in = null;

Google maps on cell phones

 41

conn = (ContentConnection)Connector.open(url);

in = conn.openInputStream();

And use the method createImage() in the class Image to get the map image from
certain page:

Image imageSource = Image.createImage(in);

mapTile.image = imageSource;

5.7 About the assistant classes
Here is the brief description of the functions of all assistant classes. For detail refer to
the documentation of my midlet suite.
. Coordinate.java The coordinate of certain place in google maps
. Dialog.java All the dialog that appears between two screen

objects.
. FixedByteArrayOutputStream.java

 Manage the bytes of Map Tile
. LinkedHashtable.java Save the Map Tile
. MyRecordStore.java RecordStore of this midlet suite
. RamManager.java Manag the distribution of limited resource
. ThreadManager.java Manage the distribution of threads
. Tile.java Represent the Tile of Map
. XYZ.java The group of x,y,z value of a Map Tile

5.8 Test the program
The easiest way that we test this software is: Using user requirements as test cases and
check the system functionalities against each requirement to see if they are successful
or not. The following screen shots are the result that I search for the city “New York”
on the emulator.

1 MainMenu 2 HelpPage

Google maps on cell phones

 42

3 SearchMenu 4 MyCanvas (Map)

5 MyCanvas (Menu) 6 ErrorPag

Figure 15 : Screen shots on the emulator

From above screen shots we can see that all supposed requirements are properly
fulfilled on emulator. I test my program also on actual device NOKIA 6280. It also
works very well just like on the emulator.

5.9 Conclusion
5.9.1 Difficulties
The whole program took me nearly one and a half month. The reason that I took so
much time is: during the implementation, I have encountered the following
difficulties:

1) Knowledge deficiency in PHP

Google maps on cell phones

 43

At first, I tried to analyze the whole system of the GmapViewer. It uses PHP to solve
many tasks like find the latitude and longitude of certain location, convert it to
mercator coordinate system, and get the map tile from the google maps server. But I
have too few knowledge about PHP. It failed again and again because of unknown
reasons. For example, it took me 2 days long to know that the server that I use to put
my PHP file does not allow that I open other url address.

2) Finding the 3 major algorithm
The above 3 algorithms seem easy but each took me a lot of time. For example, on the
web site of google maps, I gave the name of the city and get a map of it. But from the
source code of the map page I can not find the latitude and longitude value. So I tried
to found another web site to compute these two values according to certain city name.
It turned out too complicated. Occasionally I found if I put “&output=html” this
parameter to the address, these two values are included in the source code. Thus I
solved this problem.

3) Problems with debugging
When the whole system already worked very well on the WTK emulator, I tried to run
it on actual device. But it did not work. I could not know exactly why. Finally I found
that there was a choice on the NOKIA emulator which is called “diagnostic”. I run
this “diagnostic” and found the reason that the system did not work. It took too much
RAM. The process of rendering my program is tedious. This is because I did not
exactly know which step took so much RAM. I checked step by step and finally I
found that when I analyzed the String that I got from the javascript soured code to get
the latitude and longitude values, I used always the class String.

String s;

for (;;) {

 int c = in.read();

 if (c == -1) break;

 s = s + (char)c; // Using the class String

 }

If I use the class StringBuffer,

StringBuffer ss = new StringBuffer();

for (;;) {

 int c = in.read();

 if (c == -1) break;

 ss.append((char)c); //Using the cla ss StringBuffer

 }

String s = ss.toString();

this RAM problem will not happen. After I solve the problem, I found the reason on

Google maps on cell phones

 44

google: Every time the method is invoked,

s = s + (char)c;

I construct a new String object and that will take too much RAM.

4) Unsupported functions in API
As mentioned before, J2ME is a subset of J2SE API. This means some of the classes
will be left out. For example in the class java.lang.Math is there no method
Math.log() . I must implement it by myself.

5.9.2 Extension Suggestion
Many other functions can also be implemented in the future version. For example

1) We can search for a certain location in a certain city. Just like in google maps. We

can search for “pizza” in the city “New York”. The server will give us a list of
addresses. We can choose one and show it in our map. Actually the job is just to
find the latitude and longitude values for those addresses. GMapVierwer already
implemented this task. It finds the values through the PHP proxy. If I had time, I
can also find those values using J2ME itself.

2) The satellite image of map can also be shown on the screen of cell phones. Only

the address systems are changed. This is an example of a satellite map tile
address:

 http://kh1.google.com/kh?n=404&v=6&t=tqtsr
 These are the addresses of all adjacent tiles:
 http://kh2.google.com/kh?n=404&v=6&t=tqstq

http://kh0.google.com/kh?n=404&v=6&t=tqtrs
http://kh1.google.com/kh?n=404&v=6&t=tqtsr
http://kh3.google.com/kh?n=404&v=6&t=tqtrt
http://kh3.google.com/kh?n=404&v=6&t=tqtrt
http://kh1.google.com/kh?n=404&v=6&t=tqsqt
http://kh0.google.com/kh?n=404&v=6&t=tqtsq

 You can find the difference is after „t=“. If we can find the relationship between
them, we can show the whole satellite map on the screen.

Conclusion

45

6 Conclusion

Today cell phones are not only used as traditional “telephone”. Many improvements
are developed or are being worked. For example

• Translation function will be useful.
• With the development of wireless and 3-G technology, many new entertainment and
communication services are now becoming available.

• Many phones already have speech recognition in a form of voice dialing.
• With time, image scanning may develop into full 3D modeling.
• Many Operators try to develop television on cell phones.

Due to these future prospects, we need a good program language for mobile phones. It
proved that not only for developers but also for mobile phone manufacturers is J2ME
a good choice. Unlike software running on PCs, the mobile phone industry does not
use one operating system or platform. That means that the developers have had to
know every phone platform before writing code. J2ME, like its brothers, promised
software developers the hope of achieving device independence for applications
running on mobile phones. It promised to lower development costs by offering the
capability of “write once, run anywhere“. It also simplified application creation by
providing a platform that was already familiar to millions of Java programmers. To
mobile phone manufacturers, J2ME offered a development community that could
deliver new functionality for their devices.
It seems that J2ME landscape is more complicated than that of J2SE, but the
complexity is due to the underlying diversity of the devices that J2ME must support.
Actually, I have found that it takes little effort to learn my way around a particular
configuration and profile.
In this thesis I tried to provide a careful study of J2ME. This is an interesting program
language with very good future. I think the best way to learn to program with J2ME is
to analyze the source codes that other people already have developed and try to
rewrite the same program from very beginning.

Reference

46

A References

[JCP] Java Community Process Official Web Site

 http://www.jcp.com

[MIDP2.0] What Is New In MIDP 2.0

 http://developers.sun.com/techtopics/mobility/midp/arti

 cles/midp20/

[JSR] List of JSRs by JCP Technology

 http://jcp.org/en/jsr/tech?listBy=1&listByType=platform

[SVGMobile] Mobile SVG Profiles

 http://www.w3.org/TR/SVGMobile/

[JSR226] Scalable 2D Vector Graphics API for J2ME

 http://www.jcp.org/en/jsr/detail?id=226

[RIJSR226] RI Binary for JSR 226 API for J2ME

http://www.forum.nokia.com/info/sw.nokia.com/id/5305ba6

b-e943-42cb-8bff-83d5960a9df4.html

[JSR226Nokia] Learning Program from Sun about JSR226

http://developers.sun.com/learning/javaoneonline/2005/

mobility/TS-7105.pdf

[JSDK] Java SE 6 Beta

 http://java.sun.com/javase/downloads/index.html

[WTK] The Sun Java Wireless Toolkit 2.3 Beta

 http://java.sun.com/products/sjwtoolkit/

[ECLIPSE] Eclipse SDK 3.1.2

 http://www.eclipse.org/downloads/

[EclipseME] EclipseME 1.5.0

http://sourceforge.net/project/showfiles.php?group_id=8

6829

[EclipseMEIn] Installing EclipseMe itself

http://eclipseme.org/docs/installEclipseME.html

[MidCreation] Create Java Midlet

 http://eclipseme.org/docs/createMidlet.html

[GoogleMaps] Google Maps

http://maps.google.com/

[JMapJS] Goolge Map Javascript Source Code

http://maps.google.com/mapfiles/maps.31.js

[LaLoToTile] Java Source Code for Converting Latitude

 and Longitude to Tile

http://www.mapki.com/index.php?title=Lat/Lon_To_Tile

[GMapViewer] A Java Midlet to Show Google Maps Which Was Developed

 by Sreid.

 http://www.sreid.org/GMapViewer/

[Top2002] Topley, K.

 J2ME in a Nutshell

Reference

 47

 O’Reilly Edition March 2002

[Wang2001] Wang, S

Introduction to Java Midlet Development

25,08,2001

[Wells2004] Wells, M.J.

J2ME.Game.Programming

2004.

[MIDPAPI] Sun Microsystems

 MIDP APIs for Wireless Applications

 February 2001

[Pro2002] Provost W.W

 Wireless Programming Using J2ME and MIDP

 Revision 1.0. 2002

[WTKGui] Sun Microsystems

 User’s Guide J2ME Wireless Toolkit

 October 2004

[Day2001] Day, B.

 Developing Wireless Applications using the J2ME

 2001

Figure list

48

B Figure list

Figure 1: Three Editions of Java..5
Figure 2: JSR 226 AP...10
Figue 3: Standard Development Process of Java Midlet11

Figure 4: WTK Properly integrated into EclipseME ...13

Figure 5: Hello.jar on Cell Phone Emulator ..14

Figure 6: Example of JAD File..15
Figure 7: LCDUI Example (TextBox) ...20

Figure 8 : Canvas Example..22
Figure 9: Example using RecordStore ...25

Figure 10: Example using HttpConnection..27

Figure 11 : The hierarchy architecture of the package javax.microedition.io27

Figure 12 : Flow diagram of the user interface system..31

Figure 13: Sequence diagram of the process of getting map tiles32

Figure 14 : Class diagram of all major classes of our system..............................33

Figure 15 : Screen shots on the emulator...42

Content of CD-ROM

49

C Content of CD-ROM

Environment Software that are needed for developing

Midlet

Environment/JSE JDK-6-beta for windows

Environment/ECLIPSE ECLIPSE3-3.1.2 for windows

Environment/ECLIPSEME ECLIPSEME-1.5.0

Environment/WTK Sun-wireless-toolkit-2_3

Environment/Nokia Nokia carbide1.0.1(development suite from

nokia) S40_DP20_SDK (SDK and Emulator)

Environment/SIEMENS SDK M55 Emulator

Environment/SVG JSR-226-specification

JSR-226-implementation (from nokia)

Tinylinemidpsdk

Tinylinemidp.jar

Tinylinens60.jar

Files The study material that I found in the

internet

Files/Books The reference books

Files/Papers The papers

Files/web The web address of internet resource

Myfiles All the files that i write myself

Myfiles/powerpoint Powerpoint

Myfiles/thesis Thesis in word and pdf

Myfiles/GoogleMaps src All the source code of my midlet suite

Myfiles/GoogleMaps doc The HTML document of all classes

Myfiles/GoogleMaps The Google Maps midlet suite

Myfiles/GoogleMaps deploy JAD and JAR file

Source Code The source code I found on the web

Source Code/App A phone book midlet

Source Code/Game 15 midlet games

Source Code/GoogleMap The source code of GoogleMap

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institution of tertiary education.
All information derived from the published or unpublished work of others has been
acknowledged in the text and the list of references.

Signature: ...

Student's full name: ...

Date: ...

Faculty/ School: ...

