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Abstract

Millions of people publish their opinions about a variety of topics on the microblogging
platform Twitter every day. Analyzing this stream of opinions automatically can be
useful in various ways. For example, as a customer one might like to get an idea of the
general opinion about a product before buying it. Another example are politicians who
may be interested in the sentiment towards their political party, especially shortly before
an election. As a first step towards such an automated analysis, algorithms which are
able to determine the sentiment of a tweet are needed. This thesis provides a high quality
testset to evaluate such algorithms, analyzes and compares various methods to classify
a tweet’s sentiment, and finally illustrates how a web based realtime sentiment tracking
application, which tracks the sentiment towards given keywords, can be implemented.

Zusammenfassung

Auf der Microblogging-Plattform Twitter geben Millionen von Menschen ihre Meinung
zu vielerlei Dingen in Form von Kurznachrichten preis. Diese Informationen können
auf vielfältige Art genutzt werden. Als Privatperson ist man vielleicht vor dem Kauf
eines Produktes an der öffentlichen Meinung bezüglich des Produktes interessiert. Auch
Politiker möchten vor einer Wahl gerne wissen wie sie im Vergleich zur Konkurrenz da-
stehen. Zur Auswertung der großen Datenmengen sind Algorithmen notwendig, welche
automatisiert die Stimmung eines Tweets erkennen können. Im Rahmen dieser Arbeit
wird ein qualitativ hochwertiges Testset hinreichender Größe erstellt, mit dem eine
Analyse und ein Vergleich verschiedener Klassifikationsmethoden durchgeführt werden
kann. Schließlich wird dargestellt, wie eine Webapplikation zur Echtzeitverfolgung der
Stimmung bezüglich gegebener Schlüsselworte umgesetzt werden kann.
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1 Introduction

Due to the enormous increase in web technologies and the rise of the Web 2.0, social
media and micro blogs are among the most popular forms of communication these days.
Even users of classical communication tools, such as mailing lists or blogs, tend to shift
to microblogging platforms due to the easy accessibility and the ease of use compared
to the traditional tools (Pak and Paroubek 2010). Every day, millions of messages are
posted on microblogging websites like Facebook1, Tumblr2 and Twitter3. The messages
cover a multitude of topics: Authors may write about their life, share opinions regarding
various topics, such as products or politics, or just discuss current events and issues.
Hence, microblogging tends to be a valuable source of people’s opinions and sentiments
which can be efficiently used for marketing or social studies.

For the research in this thesis Twitter has been chosen as the microblogging platform to
be investigated. Messages on Twitter are called tweets. Figure 1.1 shows an example.
A tweet’s length cannot exceed 140 characters. If a tweet is considered particularly
interesting, it can be retweeted, which means reposted by another person, similar to a
quotation. Moreover, a tweet can contain special tokens, the so called mentions being
one kind of tokens. A mention begins with a @-character, followed by the name of a
user, for example @NilsHaldenwang. Using a mention results in the mentioned user
being notified about it. Another kind of special token is the hash tag. Hash tags start
with a #-char, followed by a keyword indicating the topic of the tweet, for example
#android.

Figure 1.1: Example screen shot of a tweet with positive sentiment.

The reasons to choose Twitter from all available microblogging platforms are similar to
those of Pak and Paroubek (2010) and Bakliwal et al. (2012). In 2012, Twitter had 465
million users which produced 175 million messages a day4. Thus, one can collect an
arbitrary large corpus easily with the help of the provided API5. Due to the character
limit of 140 characters tweets are considered to be less ambiguous than other messages.

1http://www.facebook.com
2http://www.tumblr.com
3http://www.twitter.com
4http://blog.sironaconsulting.com/.a/6a00d8341c761a53ef016767bafa2c970b-pi
5https://dev.twitter.com

http://www.facebook.com
http://www.tumblr.com
http://www.twitter.com
http://blog.sironaconsulting.com/.a/6a00d8341c761a53ef016767bafa2c970b-pi
https://dev.twitter.com
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Moreover, Twitter’s user base is made up of people from various socio-cultural domains.
There are lots of regular users but also celebrities, company representatives and even
politicians who use Twitter. Furthermore, the messages are written by authors from
multiple countries, the majority of them (107.7 million of the 175 million per day)
coming from the United States. For this reason, this work is focussed on the analysis
of tweets written in the English language.

1.1 Motivation

Twitter offers an arbitrarily large amount of opinions and attitudes towards numerous
topics, for example products, politics, celebrities and many more. Some say it can be
considered as an “Electronic Word of Mouth” (Jansen et al. 2009). Monitoring and
analyzing this data provides enormous opportunities for both public and private sec-
tors. Observations indicate a strong correlation between rumours and negative opinions,
which have been shared by users on social networks, and the reputation of a certain
product or company (Saif et al. 2012a, Ward and Ostrom 2003, Yoon et al. 1993).
Therefore, the consideration of microblogging platforms like Twitter can help compa-
nies to improve their relationship with the customers, understanding their customers’
needs and reacting better to changes in the market (Saif et al. 2012a).

The results of Asur and Huberman (2010) strengthen this hypothesis. They found a
strong correlation between the rate of tweets with positive sentiment and the box-office
revenue of movies. Especially interesting is the fact that a change of polarity towards
a movie before and after release has a strong influence on the box-office revenue. To
measure the polarity of tweets about a movie, the following polarity ratio has been
introduced:

PNratio =
|tweets with positive sentiment|
|tweets with negative sentiment| (1.1)

The movie New Moon, for example, started out with a polarity ratio of 6.29 and a
box-office revenue of 142M in the first week. Due to a downfall of the polarity ratio
to 5 in the second week, the box-office revenue also dropped to 42M. On the contrary,
increasing box-office revenues were recognized in conjunction with an uprise of polarity.
The movie The Blind Side started out with a polarity ratio of 5.02 and opening week
sales of 34M. However, in the second week the polarity ratio increased to 9.65, which
led to revenues of 40.1M.

Taking into account that the sentiment of tweets influences the reputation of products
and companies, they also may correlate with stock prices. The work of Bollen et al.
(2011b) revealed a strong correlation between the public mood at Twitter and the Dow
Jones Industrial Average (DIJA). Thus, they were able to significantly improve the
DIJA closing value prediction of a Self-Organizing Fuzzy Neural Network by adding the
mood state of the public Twitter stream as additional inputs. Moreover, these results
have been verified recently by Mittal and Goel (2012).
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The results of Bollen et al. (2011a) suggest that the public mood represented by the
Twitter stream responds strongly to political or cultural events like the U.S. Presidential
Election of November 4, 2008 and Thanksgiving Day. Because of this they propose the
usage of the public mood to detect such events which may not be as obvious as an
election or a holiday. Another use case for the socio-economic domain is the realtime
analysis of political debates. The first U.S. presidential debate in 2008 was analyzed
by Diakopoulos and Shamma (2010). They have been able to identify key sections of
the debate by looking at the polarity of related tweets. In addition, they tracked the
sentiment towards the participants (Obama and McCain) over time and found Obama
to be more popular.

It has been shown that the reliable classification of a tweet’s sentiment has many real
world use cases. Therefore, it is of great importance to evaluate and compare current
methods to get a deeper insight into their strengths and weaknesses to further improve
their real world applications.

1.2 Objectives and Structure of the Thesis

This thesis is aimed towards three major objectives. Firstly, a dataset of high quality
shall be created to be able to evaluate and compare various methods for Twitter Sen-
timent Analysis. Secondly, standard classifiers, features and preprocessing techniques
are looked at in detail to clear up contradictory claims made by current researchers.
This should be done by evaluating them with the created testset. Thirdly, a general
concept to apply the obtained classifier should be illustrated by implementing a realtime
sentiment tracking application.

Chapter 2, Basics and State of the Art, first establishes the basic knowledge necessary
to understand the current methods. This basics consist of describing two standard
classification algorithms and introducing basic feature engineering techniques along with
common preprocessing methods. The chapter concludes with an overview of the current
research regarding Twitter Sentiment Analysis.

In chapter 3, Performance Investigation, the creation of a high quality test dataset is
described. Moreover, this dataset is analyzed with respect to the features introduced in
the preceding chapter. Additionally, it provides information about how performance of
classifiers can be measured. Finally, a variety of methods and algorithms are evaluated
with the created testset and the results are compared and discussed.

The implementation of the exemplary realtime sentiment tracking system is described
in chapter 4, Implementation of a Real Time Sentiment Tracking Application. After
defining the requirements and providing an overview of the architecture and the tools
used, a more detailed description of each feature’s implementation is given.

Chapter 5, Reflexion, concludes the thesis by summarizing the results, discussing their
transferability to other domains, draws a final conclusion and provides an outlook on
further work.





2 Basics and State of the Art

In this chapter basic knowledge necessary to understand the current methods for Twit-
ter Sentiment Analysis is presented first. The aforementioned basics consist of the
introduction of two standard classification methods, followed by an illustration of cur-
rent feature engineering methodologies and data preprocessing techniques. Finally, an
overview of the current methods is provided and their results are discussed.

2.1 Naive Bayes Classification

Bayesian classifiers are statistical classifiers which are able to predict the probability of a
given sample to belong to a particular class. The simplest Bayesian classifier, known as
Naive Bayes Classifier (NBC), is comparable in performance with Decision Trees,
Neural Networks (Han et al. 2006) and, using various smoothing techniques (Yuan
et al. 2012), even with Support Vector Machines (SVM).

2.1.1 Bayes Theorem

The following explanation is taken, but slightly simplified and shortened, from Han
et al. (2006).

Let X be a data sample with unknown class label and let H be a hypothesis, such as
that the data sample X belongs to a specified class C. The classification problem is to
determine P (H|X), the probability that given a sample X the hypothesis H holds.

P (H|X) is called posterior probability of H conditioned on X. Within the domain of
Twitter Sentiment Analysis the data samples consist of tweets, their canonical features
being the words. Given X contains the words sad and bad and H is the hypothesis
that the tweet has a negative sentiment. Then P (H|X) reflects the confidence that X
has a negative sentiment, given we know it includes the words sad and bad.

In contrast, P (H) is the prior probability of H, the probability of the hypothesis
holding for any given sample X. For example, this is the probability that any given
tweet has a negative sentiment, regardless of which words it contains. Note the prior
probabilities independence of X, whereas the posterior probability is based on additional
information (such as background knowledge).

Similarly, P (X|H) is the posterior probability of X conditioned on H. In the example
this would be the probability that X contains the words sad and bad, given we know
its sentiment is negative. P (X) is the prior probability of X, in the example it is the
probability of a tweet containing the words sad and bad.
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The question is: How can these probabilities be estimated? First of all, P (X), P (H)

and P (X|H) may be estimated from the given data. To finally calculate the posterior
probability from these probabilities one can harness the Bayes Theorem:

P (H|X) =

P (X|H)P (H)

P (X)

. (2.1)

2.1.2 Classification

This section is also based on Han et al. (2006) and slightly adapted to fit the needs of
this thesis.

Each data sample is represented by an n-dimensional vector X = (x1, x2, . . . , xn

), de-
picting n measurements made on the sample from n attributes A1, A2, . . . , An

.

Let C1, C2, . . . , Cm

be m classes to which an unknown given sample X can be assigned.
The classifier will predict X to belong to the class C

i

having the highest posterior
probability, conditioned on X. That is, the naive Bayes classifier assigns an unknown
sample X to class C

i

if and only if

P (C
i

|X) > P (C
j

|X) for 1  j  m, j 6= i . (2.2)

Thus, we maximize P (C
i

|X). The class C
i

for which P (C
i

|X) is maximized is called
the maximum posteriori hypothesis. It can be computed using the Bayes Theorem
2.1:

P (C
i

|X) =

P (X|C
i

)P (C
i

)

P (X)

. (2.3)

Owing to the fact that P (X) is constant for all classes, P (X|C
i

)P (C
i

) needs to be max-
imized. One problem which can occur is a lack of knowledge about the class prior prob-
abilities. Therefore, it is commonly assumed that the classes’ occurrences are equally
likely: P (C1) = P (C2) = · · · = P (C

m

). One would maximize P (X|C
i

). Otherwise
P (X|C

i

)P (C
i

) would be maximized. Nevertheless, the class prior probability may be
estimated by

P (C
i

) =

s
i

s
, (2.4)

where s
i

is the number of training samples of class C
i

and s is the total number of
training samples.

Text data can contain a nearly infinite number of attributes because there is no limit
for forming words, especially due to the excessive use of slang and abbreviations on
microblogging platforms. Thus, it would be extremely computational expensive, or
even impossible, to compute P (X|C

i

). Consequently, the computation has to be reduced
somehow. Simplifying the computation can be done by making the naive assumption
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of class conditional independence. This assumption presumes that the values of
the attributes are conditionally independent of one another, given the class label of the
sample. That is, there are no dependence relationships among the attributes. Thus,
P (X|C

i

) can be computed like this:

P (X|C
i

) =

nY

k=1

P (x
k

|C
i

) . (2.5)

The computation of P (x
k

|C
i

) can be done with the maximum likelihood estima-
tion

P (x
k

|C
i

) =

s
ik

s
i

, (2.6)

where s
ik

is the number of training samples of class C
i

having the value x
k

for A
k

, and
s
i

is the number of training samples belonging to C
i

.

When dealing with text data, especially short texts like tweets, one would not con-
sider the number of occurrences of a word, but just its presence. Thus, the maximum
likelihood estimation is often (Joachims 2002, Saif et al. 2012a;b) formulated as

P (w|C
i

) =

TF (w,C
i

)P
w

02V TF (w0, C
i

)

, (2.7)

where TF (w,C
i

) is the occurrence frequency of word w in documents of class C
i

, and
V is the vocabulary of the underlying text corpus.

In order to classify an unknown sample X, P (X|C
i

)P (C
i

) is evaluated for each class
C

i

. Sample X is then assigned to the class C
i

if and only if

P (X|C
i

)P (C
i

) > P (X|C
j

)P (C
j

) for 1  j  m, j 6= i . (2.8)

Simply put, it is assigned to the class C
i

for which P (X|C
i

)P (C
i

)) is the maximum:

classify(X) = argmax

Ci

P (X|C
i

)P (C
i

) . (2.9)

For text classification problems, using equations 2.5 and 2.7, the classification function
can be formulated as:

classify(X) = argmax

Ci

P (C
i

)

nY

k=1

TF (w
k

, C
i

)P
w

02V TF (w0, C
i

)

, (2.10)

with n being the number of words in X.
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Since the classification function is basically a product of many small numbers, the
probability is often transformed to the so called log likelihood, to reduce floating point
errors while computing the results (Pak and Paroubek 2010, Bonev et al. 2012):

classify(X) = argmax

Ci

 
logP (C

i

) +

nX

k=1

log

TF (w
k

, C
i

)P
w

02V TF (w0, C
i

)

!
. (2.11)

2.1.3 Dealing with Unknown Features: Smoothing Techniques

When the language is informal, such as that in tweets, there are many unknown words,
which are not covered by training data. Furthermore, the maximum likelihood estima-
tion for P (w|C

i

) (see equation 2.7) cannot be computed because the divisor would be
zero. Hence, the model would assign unknown words a zero probability for all of the
classes, which is probably not true. Various smoothing techniques have been introduced
to deal with this problem by estimating a probability for unknown words.

Zhai and Lafferty (2004) summarize: “In general, smoothing methods discount the prob-
abilities of words seen in the text and assign the extra probability mass to the unseen
words according to some fallback model.” As their field of research was information
retrieval, they exploited the collection language model as fallback. For the purpose
of twitter sentiment analysis, the fallback model may be exchanged, but for now the
explanation of the general principle will stick to the definitions of Zhai and Lafferty
(2004). The nomenclature is slightly adapted to fit the previous explanations.

Chen and Goodman (1996) assume the general form of a smoothed model to be the
following:

P (w|C
i

) =

⇢
P
s

(w|C
i

), if word w is seen
↵
d

P (w|M), otherwise . (2.12)

In this equation P
s

(w|C
i

) is the smoothed probability of a seen word, P (w|M) is the
collection language model and ↵

d

is a coefficient controlling the probability mass as-
signed to unseen words, so that all probabilities sum up to one. Given P

s

(w|C
i

), ↵
d

must have the form:

↵
d

=

1 �
P

w2V :TF (w,Ci)>0 Ps

(w|C
i

)

1 �
P

w2V :TF (w,Ci)>0 P (w|M)

. (2.13)

Hence, the essential difference of smoothing methods is the choice of P
s

(w|C
i

).

The easiest smoothing method coming to mind is called Laplace smoothing. It was
suggested by Vapnik (1982), and its idea is as simple as adding an extra count to
every word. Even though the idea is not complicated, this technique works well in
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practice (Joachims 1996; 2002). Applied to the maximum likelihood estimation for text
classification (see equation 2.7), the new estimator looks like this:

P
L

(w|C
i

) =

1 + TF (w,C
i

)

|V | +
P

w

02V TF (w0, C
i

)

. (2.14)

Yuan et al. (2012) argue that just adding one to the occurrence frequency of the word
just adds noise, to which classes containing few training data samples are very sensitive.
However, as this is not the case for twitter sentiment classification, Laplace smoothing
can still be used. For instance, it was used as baseline in conjunction with an unigram
language model by Saif et al. (2012b;a).

Another smoothing technique is the Jelinek-Mercer method introduced by Jelinek
and Mercer (1980). The maximum likelihood model is linearly interpolated with the
fallback model. A coefficient � is used to control the influence of each:

P
�

(w|C
i

) = (1 � �)
TF (w,C

i

)P
w

02V TF (w0, C
i

)

+ �P (w|M) . (2.15)

This is basically a simple mixture model to mingle two distributions with a given weight.
This smoothing technique also has been used for twitter sentiment classification with
various fallback models (Saif et al. 2012b;a, Liu et al. 2012).

One may also consider Bayesian smoothing using Dirichlet priors. According to
MacKay and Peto (1995) a language model is a multinomial distribution, for which the
conjugate prior for Bayesian analysis is the Dirichlet distribution. Zhai and Lafferty
(2004) choose the parameters of the Dirichlet to be:

(µP (w1|M), µP (w2|M), . . . , µP (w
n

|M)) . (2.16)

Therefore, the model is given by:

P
µ

(w|C
i

) =

TF (w,C
i

) + µP (w|M)P
w

02V TF (w0, C
i

) + µ
. (2.17)

It may be noticed that the Laplace method is just a special case of Bayesian smoothing
using Dirichlet priors, with P (w|M) =

1
|V | and µ = |V |. To the best of my knowl-

edge there are no further applications to twitter sentiment analysis except the afore
mentioned ones using the Laplace method.

In addition, there is the Absolute discounting. To lower the probability of seen
words, a constant is subtracted from the word’s count (Zhai and Lafferty 2004). This
method is similar to the Jelinek-Mercer method, the difference being subtraction of a
constant instead of multiplication with (1 � �):

P
�

(w|C
i

) =

max(TF (w,C
i

) � �, 0)P
w

02V TF (w0, C
i

)

� �P (w|M) , (2.18)
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where � 2 [0, 1] is the discount constant and � =

�|Ci|u
|Ci| , assuring all probabilities sum

to one. The term |C
i

|
u

denotes the number of unique terms in class C
i

, whereas |C
i

| is
the total count. This method, to the best of my knowledge, has neither been used for
twitter sentiment classification so far.

Finally, it can be beneficial to incorporate multiple smoothing methods, one example
being Two-stage smoothing (Yuan et al. 2012):

P
�,µ

(w|C
i

) = (1 � �)
TF (w,C

i

) + µP (w|M)P
w

02V TF (w0, C
i

) + µ
+ �P (w|M) . (2.19)

This example combines the Jelinek-Mercer method with Bayesian Smooting using Dirich-
let priors. Yuan et al. (2012) report this method to perform reasonably well for topic
classification of short questions, which is very similar to sentiment classification of
tweets.

All in all, there are multiple smoothing methods available, of which some have been
used for twitter sentiment classification or similar tasks. However, it still has to be
investigated which of those methods yields the best results in conjunction with various
features.

2.1.4 Implementation

Due to the simplicity of the computations it is not necessary to use any special frame-
work. Naive Bayes Classifiers could be easily implemented in very few lines of code.

Listing 1 shows a simple example implementation of a Naive Bayes Classifier for text-
classification using unigram features (see section 2.3.1 for details) with Laplace smooth-
ing. For reasons of simplicity other smoothing methods are left out here but will be
used in the evaluation of course.

The constructor initialize creates a Hash which stores the term frequencies for the
classes in another nested Hash. Furthermore, it creates another Hash to store the total
term frequencies of all words in the training corpus. To train the classifier with exam-
ples, the method train is used, which expects a training sample of type String and
its corresponding class label as parameters. For each word in the sample it increments
the term frequency for the correct class and the total term frequency. The method
maximum_likelihood_estimation computes the maximum likelihood estimation from
the learned language model for a given term and class, according to equation 2.7. Fi-
nally, the method classify can be used to classify an unknown sample. It selects
the class with the highest probability, according to 2.11, leaving out the prior proba-
bilities for the classes, since in general they are not known for most text-classification
problems.
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1 class NaiveBayesClassifier
2 def initialize
3 @class_term_frequencies = Hash.new { Hash.new(0) }
4 @total_term_frequencies = Hash.new(0)
5 end
6

7 def train(example, class_label)
8 example.terms.uniq.each do |term|
9 @class_term_frequencies[class_label][term] += 1

10 @total_term_frequencies[term] += 1
11 end
12 end
13

14 def maximum_likelihood_estimation(term, klass)
15 (@class_term_frequencies[klass][term] + 1.0) /
16 (@total_term_frequencies[term] + @total_term_frequencies.
17 inject(0) { |k, v, tmp| tmp + v })
18 end
19

20 def classify(sample)
21 result = Hash.new(0)
22 sample.each do |term|
23 @class_term_frequencies.each_key do |klass|
24 result[klass] += Math.log(
25 maximum_likelihood_estimation(word, klass)
26 )
27 end
28 end
29 result.keys.sort_by {|key| result[key]}.last
30 end
31 end

Listing 1: Naive Bayes Classifier written in the programming language Ruby.

2.2 Support Vector Machines

This section gives an introduction to Support Vector Machines (SVMs), based on
Joachims (2002, chapter 3). SVMs are non-probabilistic linear binary classifiers, which
can be used for classification and regression analysis. They are able to handle large
feature spaces reasonably well. Firstly, the history of SVMs will be highlighted shortly,
followed by an illustration of the various types of SVMs. While the standard SVM is a
linear classifier, non-linear problems also can be handled using a so called kernel trick,
which is also illustrated. The chapter concludes with a discussion on currently available
SVM implementations.
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2.2.1 Origins and Basic Idea

Support Vector Machines were developed based on the Structural Risk Minimization
principle (Vapnik 1982, Cortes and Vapnik 1995, Vapnik 1998). The idea is to find a
hypothesis h from a hypothesis space H, for which the lowest error probability Err(h)
can be guaranteed for a given sample S:

(~x1, y1), . . . , (~xn

, y
n

) ~x
i

2 Rn, y
i

2 [�1,+1] , (2.20)

where ~x
i

denotes a feature vector and y
i

the class label. The true error of a hypothesis
h is connected with the error Err

train

(h) of h on the training set and the complexity of
h by the following upper bound (Vapnik 1998):

Err(h)  Err
train

(h) +O

✓
d ln(n

d

) � ln(⌘)

n

◆
. (2.21)

The probability of the bound holding is at least 1 � ⌘. Furthermore, d denotes the
so-called VC-dimension (Vapnik 1998), which indicates the expressiveness of the hy-
pothesis space H. Equation 2.21 reflects a trade-off between complexity of the hypoth-
esis space and the training error. On the one hand, a simple hypothesis space with a
small VC-dimension will probably not contain good approximation functions. Thus,
the training error, along with the true error, will be large. On the other hand, a very
large hypothesis space (large VC-dimension) will lead to a smaller training error, but
will also increase the upper bound due to its linear influence in the right hand side term
of equation 2.21.

Therefore, when the hypothesis space has a high VC-dimension, the hypothesis with
a very low training error may just fit the training data without proper generalization.
This results in poor performance when predicting unknown examples. In general, such
behavior of machine learning algorithms is called overfitting. Hence, it is crucial to
pick a hypothesis space with correct complexity.

In Structural Risk Minimization, the prevention of overfitting is achieved by nesting
hypothesis spaces H

i

in a way that their respective VC-dimension d
i

increases:

H1 ⇢ H2 ⇢ H3 ⇢ · · · ⇢ H
i

⇢ . . . and 8i : d
i

 d
i+1 . (2.22)

This structure has to be defined before analyzing the training data. The problem to be
solved is to find an index i⇤ for which the training error is minimal.

The question is: How can those structures be found in practice?

In Structural Risk Minimization, linear threshold functions with N features are created,
resulting in the function’s VC-complexity being N + 1. Given the features as a ranked
list, using the first feature will have a VC-dimension of two, using the first two features
will have a VC-dimension of three and so on. For very large feature spaces, as it is the
case in text classification, this is not practical. Moreover, it is not clear how to rank
the features.
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Support Vector Machines learn linear threshold functions of the type:

h(~x) = sign{~w · ~x+ b} =

⇢
+1, if ~w · ~x+ b > 0

�1, otherwise (2.23)

These functions correspond to a hyperplane within the feature space. This hyperplane
is described by ~w, being the hyperplanes normal vector, and b, being the offset from the
origin along this normal vector. All vectors ~x, which satisfy equation ~w · ~x+ b = 0, lie
within the hyperplane. Hence, classification of an example ~x with h(~x) basically is done
by determining on which side of the hyperplane it lies. Vapnik (1998) showed that the
VC-dimension of Support Vector Machines is independent of the number of features,
but is bound by the margin � (see the following section 2.2.2 for an explanation of
�). Vapnik (1998) also showed that the VC-dimension becomes smaller the larger the
margin � is. While this property does not guarantee good performance, it guarantees
that SVMs do not necessarily fail, meaning they are able to perform well for high
dimensional classification tasks with a reasonable VC-dimension. For further details
see Joachims (2002) and Vapnik (1998).

2.2.2 Linear Hard-Margin SVMs

Let the training samples be tuples (~x
i

, y
i

) with ~x
i

denoting the vector of feature values
and y

i

2 {�1,+1} denoting the class labels. For simplicity it is assumed that the data
is linearly separable, meaning it can be divided by at least one hyperplane h0. Thus, a
weight vector ~w0 and a threshold b0 exist, such that all positive examples are on one side
of the hyperplane, and the negative examples are on the other side. This is equivalent
to:

8(~x
i

, y
i

) : y
i

(~w0 · ~x0
i

+ b0) > 0 . (2.24)

As shown in figure 2.1a there can be an arbitrarily large number of hyperplanes sepa-
rating the classes without errors. From these the Support Vector Machine chooses the
hyperplane h⇤ with the largest margin �, as shown in figure 2.1b. Training samples clos-
est to the hyperplane, the distance to it being exactly �, are called Support Vectors.
They are marked with circles.

To find the hyperplane h⇤ with maximum margin one has to solve the following opti-
mization problem:

Optimization Problem 1 (Hard-Margin SVM (PRIMAL))

minimize : V (~w, b) =
1

2

~w · ~w (2.25)

subject to : 8n

i=1 : yi(~w · ~x
i

+ b) � 1 . (2.26)

Equation 2.26 formalizes the condition that every example has to be on the correct side
of the hyperplane. Unlike in equation 2.24 the inequalities’ right hand side is now one
and not zero anymore. This enforces a certain margin �. As the weight vector ~w also is
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Figure 2.1: Example of a two dimensional binary classification problem. Positive examples
are marked by + and negative ones by –. The left figure (a) shows that many hyperplanes
separate the training samples without error. Support Vector Machines find the hyperplane
h

⇤, which separates the training examples with maximum margin �, as shown in the right
figure (b). The examples closest to the hyperplane are called support vectors (marked
with circles). Also see Joachims (2002).

the normal vector of the hyperplane, it is easy to verify that � =

1
||~w|| with ||~w|| being

the L2-norm of the vector ~w. Hence, by minimizing ~w · ~w the margin � is maximized.
The hyperplane h⇤ is described by ~w and b, which are the solution of the optimization
problem.

As this optimization problem is numerically hard to solve, it is often transformed to its
Wolfe dual, an equivalent problem having the same solution, which is commonly solved
in practice. For further details see Joachims (2002).

2.2.3 Soft-Margin SVMs

The Linear Hard-Margin SVM suffers from the disadvantage, that its training fails
if the data is not linearly separable. In this case, there will be no feasible solution
to Optimization Problem 1. Although most text-classification problems are linearly
separable (Joachims 2002), it may still be beneficial to allow a certain number of errors
in training. To overcome this issue, Cortes and Vapnik (1995) developed the Soft-
Margin SVM by incorporating an upper bound to the number of training errors into
Optimization Problem 1 and minimize it along with the weight vector:

Optimization Problem 2 (Soft-Margin SVM (PRIMAL))

minimize : V (~w, b) =
1

2

~w · ~w + C
nX

i=1

⇠
i

(2.27)

subject to : 8n

i=1 : yi(~w · ~x
i

+ b) � 1 � ⇠
i

(2.28)
8n

i=1 : ⇠i > 0 (2.29)
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The ⇠
i

are called slack variables. To satisfy condition 2.28, those have to be greater
than one if the corresponding training sample lies on the wrong side of the hyperplane.
Therefore,

P
n

i=1 ⇠i is an upper bound for the number of training errors. Parameter C
can be used to control how errors are tolerated. Large values for C lead to the Soft-
Margin SVM to behave similar to a Hard-Margin SVM because even slack variables with
small values lead to large increases of the objective functions value. Small values for C
will lessen the influence of the slack variables and hence allow for more errors. Finally,
condition 2.29 prevents the assignment of zero to all slack variables, as this would be
always optimal but does not take any of the ⇠

i

into account. Following the strategy to
solve Optimization Problem 1 for Hard-Margin SVMs, Optimization Problem 2 is also
transformed to its Wolfe dual due to numerical problems when solving it directly. See
Joachims (2002) for further information.

2.2.4 Non-Linear SVMs

The SVMs mentioned so far can only handle linear classification problems. Even though
text-classification problems are claimed to usually be linearly separable (Joachims 2002,
Fan et al. 2008), some of them, along with many other real world problems, are not
linearly separable. Fortunately, Boser et al. (1992) developed a method which enables
the possibility to easily transform SVMs to non-linear learners. The attribute vectors ~x

i

are basically just mapped into a higher dimensional space X 0 with a non-linear mapping
function �(~x

i

). The SVM then learns the linear maximum margin method as before
but in the new feature space X 0 of higher dimension, where the data is now linearly
separable. Even though the learned classification rule is linear in X 0, it is non-linear
when transformed back to the initial feature space.

The following example, taken from Joachims (2002), illustrates the afore mentioned
transformation for two input variables x1 and x2. One chooses

�((x1, x2)
T

) = (x2
1, x

2
2,

p
2x1x2,

p
2x1,

p
2x2, 1)

T (2.30)

as a non-linear mapping function to transform the attribute vectors to X 0. It is im-
possible to linearly separate the data as illustrated in the left-hand image (a) of figure
2.2. Yet, when mapping the data to another feature space using �(~x), as shown in
the right-hand side image (b) of 2.2, the data becomes linearly separable. One possi-
ble linear separator (although not with maximum margin) would be the weight vector
~w = (�1, 0, 0, 0,

p
2, 0)T with b = 0 (it is illustrated as dotted line in both images of

figure 2.2).

In general, the mapping function �(~x) cannot be efficiently computed. Boser et al.
(1992) have been able to solve this problem. They found it to be sufficient to compute
the dot product �(~x

i

) ·�(~x
j

) in the new feature space, when solving the dual optimiza-
tion problems. For some special cases of �(~x) those can be efficiently computed using
so called kernel functions (~x1, ~x2). As long as those kernel functions satisfy Mercer’s
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Figure 2.2: The training set shown in the left-hand graph (a) is obviously not linearly separa-
ble in (x1, x2). A non-linear transformation of the form (x2

1, x2) is depicted in the right-hand
graph (b). Within this new space, the training examples are linearly separable. Also see
Joachims (2002).

Theorem, they are guaranteed to compute the inner product of mapped vectors in the
feature space X 0 (Vapnik 2000):

(~x1, ~x2) = �(~x1) · �(~x2) . (2.31)

Depending on the choice of the kernel function, SVMs are able to learn polynomial
classifiers, radial basis function (RBF) classifiers or two layer sigmoid neural networks:


poly

(~x1, ~x2) = (~x1 · ~x2 + 1)

d (2.32)


rbf

(~x1, ~x2) = exp(��(~x1 � ~x2)
2
) (2.33)


sigmoid

(~x1, ~x2) = tanh(s(~x1 · ~x2) + c) . (2.34)

The kernel function for the mapping of the example from above is 
poly

= (~x1 ·~x2+1)

2.
This is obviously much more efficient than enumerating all possible polynomial terms,
like in polynomial regression.

The incorporation of the kernel functions into the learning process is done by replacing
every occurrence of inner products within the dual optimization problems with the
chosen kernel function. See Joachims (2002) for further details.

2.2.5 Implementation

Due to the complexity of the training process and considering the fact that the main
focus of this thesis is not the internals of SVMs, the classifier is not implemented from
scratch.
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Various SVM libraries have been released, one of the most popular being LIBSVM
(Chang and Lin 2011). LIBSVM is well documented. Moreover, its efficiency has been
proven in various contests1. All the aforementioned types of SVMs are implemented
and can be used to evaluate the performance of various features and parameters.

As it is claimed that most text-classification problems are linearly separable (Joachims
2002, Fan et al. 2008) another library called LIBLINEAR was developed. It is op-
timized for linearly separable large scale problems with sparse attribute vectors. This
is the case for almost all text-classification problems. A tweet, for example, contains
only a few words, whereas the dimension of the input space is the number of all known
words. Hence, the attribute vector of a tweet contains lots of zeros. Such a vector is
called sparse. The authors of LIBLINEAR (Fan et al. 2008) claim that it can solve
some of these problems in a few seconds, whereas it takes LIBSVM several hours to do
so. Thus, LIBLINEAR provides a valuable alternative to evaluate linear SVMs and is
used instead of LIBSVM in this thesis.

2.3 Representing Texts as Vectors

Both methods (NBC and SVM) require numerical feature vectors as inputs. In this
section the most common practices of transforming a given text document into such a
feature vector are introduced, and their relevancy for analyzing the sentiment of tweets
is discussed.

2.3.1 Word Level N-Grams

The canonical way of representing texts as vectors is transforming them by utilizing so
called n-grams. An n-gram is a contiguous sequence of n items from a given sequence
of text. Table 2.1 shows the n-grams for n 2 {1, 2, 3} of the sentence The sun is shining
today. Groups of n words are formed for word-level n-grams. The first group begins with
the first word and also contains the following n� 1 words. After this, the second group
is constructed by starting with the second word and taking the following n � 1 words.
Finally, the described process is continued until the end of the sequence is reached. To
put it simple one could say that a window of n words is constructed which moves over
the text word by word and puts a snapshot of each position into to result.

Unigrams, n = 1 Bigrams, n = 2 Trigrams, n = 3

The, sun, is, shining, to-
day

The sun, sun is, is shining,
shining today

The sun is, sun is shining,
is shining today

Table 2.1: Unigrams, bigrams and trigrams for the sentence The sun is shining today., sepa-
rated by commas.

1http://clopinet.com/isabelle/Projects/NIPS2003/, http://www.causality.inf.ethz.ch/home.php, and
http://www.causality.inf.ethz.ch/activelearning.php
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Transforming a text into n-grams divides it into an ordered list of tokens which is not
a vector yet. To construct a vector, each token is considered as a feature, which means
each token is mapped to an index of the vector. Given the underlying text corpus’
vocabulary V , the size of the vector will be |V |. Considering unigrams this could be
tens to hundreds of thousands, as for a reasonably large corpus the number of words
will be approximately the number of words in the language of the texts.

Finally, the values of the features have to be computed. These values are often set to
the term frequency TF (w, d) which is simply the number of occurrences of the word
w in the document d. This model is also referred to as bag-of-word model. Figure
2.3 illustrates this. However, it is often claimed that it is beneficial to just use binary
values for term presence in a document instead of its frequency (Pak and Paroubek
2010). There is usually no difference in these two approaches regarding tweets, since
due to their short lengths the words do not occur more then once anyway.

1

1

2

1

1

2

1

1

1

I

like

the

weather

sun

is

shining

that

nice

...

...

...

I like the weather.

The sun is shining!

That is nice!

Figure 2.3: Illustration of the unigram bag-of-words vector of a text using term frequency as
values.

Considering informal short texts like tweets, the data sparsity increases with higher
order of n-grams. The probability for a bigram to be seen in the training phase is
significantly smaller than for an unigram. Hence, bigrams or higher order n-grams
are often not suitable to be used as stand-alone features. Thus, most of the time the
unigram word model is used. Nevertheless, bag-of-word models with unigram features
include some very naive assumptions. First of all, it is assumed that the order of the
words is irrelevant, and that the words have no interconnection. Unfortunately, this
model is not able to capture negations. Within the context of sentiment analysis this
could be very important, because not happy obviously is of negative sentiment, which
the simple unigram bag-of-words model is not able to capture. Still, it performs quite
well for various text classification tasks, despite its naive assumptions (Joachims 2002).
Moreover, it is often used as a baseline to compare with in Twitter Sentiment Analysis
and plays an important role as an integral part of multiple algorithms (Go et al. 2009,
Saif et al. 2012a;b, Bakliwal et al. 2012).
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2.3.2 Sub-Word Level N-Grams

For sub-word level representations n-grams are also very popular (Joachims 2002). Some
promising results for text classification have been reported by Neumann and Schmeier
(1999). In contrast to word level n-grams the text window does not move wordwise, but
characterwise. Hence, the building blocks of the model are now groups of n characters,
and not n words anymore. The string „computer”, split up into trigrams (n = 3), results
in the tokens: _co, com, omp, put, ute, ter, er_. The beginning and the end of a word
are often marked with an underscore to emphasize that the n-gram did not occur within
a word.

One benefit of sub-word level n-grams lies in the fact that they naturally model similar
words. Take the words „computer” and „computers” as an example. Without the ne-
cessity of special linguistic analysis, the model captures the similarity of these words,
because they have multiple trigrams in common. Therefore, the model would treat
them very similar which obviously is the desired behavior. Furthermore, this represen-
tation is language agnostic. In some languages such as German the correct forms of
words are often built in complicated ways. Using sub-word level n-grams there is no
need for language specific linguistic analysis. In contrast, this behavior could also be
misleading though. Words like „computer” and „commuter” also have multiple trigrams
in common. In this case the effect is not desired. However, there are further benefits
like robustness against spelling mistakes. Especially the informal language of tweets is
full of abbreviations and spelling mistakes. Mistakes made by wrong interpretation of
these similar words will probably have no significant effect once the training corpus is
big enough.

Even though this model is very simple and seems to be robust against some of the major
flaws of informal language, it has to the best of my knowledge not yet been used for
Twitter Sentiment Analysis and its usability has to be looked at in detail.

2.3.3 Preprocessing

Many current methods for Twitter Sentiment Analysis or even text classification in
general include various steps of data preprocessing. One of the most important goals of
preprocessing is to enhance the quality of the data by removing noise. Another point
is the reduction of the feature space’s size, because some methods may struggle with
large feature vectors due to limitations in computation time and available memory.

One very popular preprocessing technique is stopword removal. Stopwords are words
which in general do not carry much meaning or sentiment, for example the, is, at,
which, on. In the field of Twitter Sentiment Analysis those stopwords are often removed
without providing any evidence that they, in fact, are useless for classification (Pak and
Paroubek 2010, Bakliwal et al. 2012, Liu et al. 2012). One possible drawback of removing
the stopwords could be that named entities whose names consist of such stopwords, such
as The Who or Take That, could not be recognized anymore. In addition, Saif et al.
(2012b) provide evidence that removal of stopwords makes classifiers perform worse.
However, the reduction in corpus size is reported to be up to 38.3% (Agarwal et al.
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2011). Hence, stopword removal also needs more evidence providing experiments to be
able to suggest doing it.

Stemming and lemmatization are two very similar preprocessing steps, of which at
least one is used in nearly all current methods of text analysis. Stemming is the process
of reducing a given inflected word to its stem. The goal is to map similar words to
the same stem, which is not necessarily the word’s base form. For example, the words
stemmer, stemmed, stemming would all be reduced to stem. The reasoning behind this
reduction is that one wants to capture the sentiment of the general concept of a word and
not of all its various inflections. Lemmatization on the other hand takes into account the
context of the word and also performs a dictionary lookup. Whereas a stemmer would
not be able to reduce the word better to good, a lemmatizer is able to do so. However,
lemmatization takes much longer than stemming and may not yield any improvements.
Some methods use stemming (Liu et al. 2012), others use sophisticated lemmatization
(Bonev et al. 2012) and some use none of them (Saif et al. 2012a). Regardless of the
fact that all the mentioned methods perform remarkably well, there is to the best of
my knowledge no direct comparison of the efficiency of those provided alternatives.

Another common practice is some kind of spelling correction. Especially in the
context of tweets, the language is informal most of the time. Hence, there are lots of
spelling mistakes. Furthermore, people use lots of abbreviations due to the 140 character
limit of tweets. For example they often write thr instead of there. Agarwal et al. (2011)
suggest an acronym dictionary with more than 5000 expansions2. Unfortunately, they
did not provide a statistic about the percentage of tokens which have been expanded.
Moreover, twitter users tend to spell words intentionally wrong to emphasize them. One
example being loooooove. As the number of repeated letters can be arbitrary, it makes
sense to normalize them. In order to be still able to distinguish the emphasized spelling
from the correct spelling, the number of repeated letters is often reduced to two (Go
et al. 2009, Agarwal et al. 2011, Saif et al. 2012a;b). The misspelled word loooooove
would become loove and so would looooooooooooooooove. Saif et al. (2012a) report the
reduction of the vocabulary size to be 3.48% on their corpus, Go et al. (2009) achieved
2.77%.

Named entity replacement can also make a model more robust. Tweets often contain
names of entities, like locations, people or companies. In general, one does not want the
model to learn a sentiment towards a certain entity. If for example a company had very
bad press in the time frame where the training data was collected, the model would
always interpret it as negative. Moreover, if the sentiment towards this company shall
be tracked, it would probably never change. One possible solution to this is to replace
these entities with wildcards, for example the word London would be replaced with
||LOCATION|| (Bonev et al. 2012). Other methods ignore nouns in general since they
are of the opinion that nouns do not carry any sentiment anyway (Bakliwal et al. 2012).
However, there is no sound evidence regarding this hypothesis yet. Moreover, tweets
contain specific entities like mentions of other users, starting with @, or URLs. It is a
common practice to also replace those with wildcards, such as ||URL||, ||USERNAME||
(Go et al. 2009, Pak and Paroubek 2010, Liu et al. 2012, Saif et al. 2012a). Regarding
replacement of mentions, Go et al. (2009) report a reduction in vocabulary size by

2compiled from http://www.noslang.org

http://www.noslang.org
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43.42%, Saif et al. (2012a) report 28.58%. The removal of URLs reduced the corpus
Go et al. (2009) by 9.41%, the vocabulary of Saif et al. (2012a) became 2.91% smaller.
It would be interesting to investigate if the different approaches differ significantly in
performance.

In conclusion one could say that many preprocessing techniques have been tried but
there is no hard evidence which of them are actually useful, and how much of a difference
they really make.

2.3.4 Part-of-Speech Tagging

Part-of-Speech Tagging (POS tagging), also often called grammatical tagging or
word-category disambiguation, refers to the process of tagging a word in a text as a
certain part of speech, depending on its original definition and its context. Most people
learn to identify nouns, verbs, adverbs and adjectives at school, which are just a small
subset of what current POS taggers are able to tag. Figure 2.4 shows a screenshot
taken from an online POS tagger for the sentence „Oh man, I really like this new
smartphone!”.

Figure 2.4: The sentence „Oh man, I really like this new smartphone!”, POS tagged by
an online demo of the University of Illinois (http://cogcomp.cs.illinois.edu/demo/pos,
also see Roth and Zelenko (1998)).

The used POS tagger is able to identify a total of 47 tags, some are shown in figure 2.4.
First of all, the tag UH at the word „Oh” means interjection, a word which expresses an
emotion but is also often used to fill pauses. Besides this, the tagger is able to identify
different types of nouns. Looking at the words „man” and „smartphone” one notices
they are both tagged with NN, which means singular noun. The word „I”, which is also
a noun, is tagged with PRP, meaning personal pronoun. The complete list of tags is
available on the project’s website3.

Even though the aforementioned online demo is intuitively accessible for humans, it
lacks an application programming interface (API). Hence, another POS tagger named
TreeTagger (Schmid 1994; 1995) gained lots of popularity within the research com-
munity as it comes as command line tool working on almost all available platforms.
Furthermore, it is able to handle multiple languages and can also perform lemmatiza-
tion along with the tagging process. Lemmatization is the process of transforming a
word to its basic form. This is illustrated in table 2.2.

TreeTagger was used by Pak and Paroubek (2010) in the context of Twitter Sentiment
Analysis. First of all, they collected a corpus of 300,000 tweets, evenly distributed across
the classes positive, negative, objective. In order to estimate the affinity to the classes

3http://cogcomp.cs.illinois.edu/demo/pos

http://cogcomp.cs.illinois.edu/demo/pos
http://cogcomp.cs.illinois.edu/demo/pos
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word POS tag lemma
The DT the

TreeTagger NP TreeTagger
is VBZ be

easy JJ easy
to TO to
use VB use
. SENT .

Table 2.2: TreeTagger result for the sentence „The TreeTagger is easy to use.”, taken from
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/. See http://www.cis.

uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf for a
full list of the tags.

positive and negative, they used emoticons as noisy labels, following the approach of
Go et al. (2009). Tweets containing happy emoticons like :-) are considered as positive,
tweets containing sad emoticons like :-( are considered to be negative. They collected
tweets from 44 newspapers to make up the objective class. Even though those labels
are noisy to some extent, they may still approximate the real distribution sufficiently.

Afterwards, they tagged the corpus using TreeTagger to be able to do a pairwise com-
parison of the tag distribution across classes. This is done by computing the following
measure for all tags:
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, (2.35)

with NT

i

denoting the number of times the tag T occurs in class i. Thus, if P T

i,j

is
positive, the corresponding tag occurred more often in class i, if it is negative, the tag
was more present in class j. The absolute value |P T

i,j

| is an indicator of how big the
difference actually is. Values close to zero indicate very similar numbers of occurrences,
values close to 1 represent almost exclusive occurrence in one class.

Figure 2.6 shows a bar chart of P T

s,o

comparing subjective tweets, a mix of positive and
negative ones, with objective tweets. The authors observe a strong inequality of the
distribution of POS tags across the two sets, and conclude that POS tags are strong
indicators for determining the affinity of a tweet to one of those sets.

Regarding nouns, it can be observed that common and proper nouns (NPS, NP, NNS)
tend to occur more often in objective texts while subjective texts consist of more per-
sonal pronouns (PP, PP$). A proper noun refers to named entities such as Apple,
Samsung or New York, while common nouns refer to classes of entities, such as city,
planet or company. These are used when describing something objectively. Subjective
tweets, in contrast, often refer to their author or another related person or entity by
usage of personal pronouns like I, you or he, she, it.

When looking at verbs it is striking that authors of subjective tweets tend to describe
themselves or address their audience by using first or second person verbs (VBP). On the

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
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Figure 2: PT values for objective vs. subjective

Figure 3: PT values for positive vs. negative

2. Tokenization – we segment text by splitting it by
spaces and punctuation marks, and form a bag of
words. However, we make sure that short forms such
as “don’t”, “I’ll”, “she’d” will remain as one word.

3. Removing stopwords – we remove articles (“a”, “an”,
“the”) from the bag of words.

4. Constructing n-grams – we make a set of n-grams out
of consecutive words. A negation (such as “no” and
“not”) is attached to a word which precedes it or fol-
lows it. For example, a sentence “I do not like fish”
will form two bigrams: “I do+not”, “do+not like”,
“not+like fish”. Such a procedure allows to improve
the accuracy of the classification since the negation
plays a special role in an opinion and sentiment ex-
pression(Wilson et al., 2005).

5.2. Classifier
We build a sentiment classifier using the multinomial Naı̈ve
Bayes classifier. We also tried SVM (Alpaydin, 2004) and

CRF (Lafferty et al., 2001), however the Naı̈ve Bayes clas-
sifier yielded the best results.
Naı̈ve Bayes classifier is based on Bayes’ theo-
rem(Anthony J, 2007).

P (s|M) =
P (s) · P (M |s)

P (M)
(2)

where s is a sentiment, M is a Twitter message. Because,
we have equal sets of positive, negative and neutral mes-
sages, we simplify the equation:

P (s|M) =
P (M |s)
P (M)

(3)

P (s|M) � P (M |s) (4)

We train two Bayes classifiers, which use different features:
presence of n-grams and part-of-speech distribution infor-
mation. N-gram based classifier uses the presence of an
n-gram in the post as a binary feature. The classifier based
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values for the classes subjective and objective, taken from Pak and Paroubek
(2010).
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Bayes classifier. We also tried SVM (Alpaydin, 2004) and

CRF (Lafferty et al., 2001), however the Naı̈ve Bayes clas-
sifier yielded the best results.
Naı̈ve Bayes classifier is based on Bayes’ theo-
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mation. N-gram based classifier uses the presence of an
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Figure 2.6: P
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values for the classes negative and positive, taken from Pak and Paroubek
(2010).

contrary, objective tweets usually include verbs in the third person (VBZ) because they
are giving information about someone in general and do not directly address anybody.
In terms of tenses the subjective texts more often use simple past tense (VBD) instead
of past participle constructions (VBZ). In addition, the basic form of verbs (VB) is often
used in subjective texts. This could be explained with the frequent use of modal verbs
(MD), such as may, might, must, shall, should, which require another verb in infinitive
form.

Even though adjectives are not distributed as clearly as nouns and verbs, it is noticeable
that superlative adjectives (JJS) are used more often to express subjective emotions
and opinions, whereas comparative adjectives (JJR) are harnessed to state facts or
give information in an objective manner. Adverbs (RB) are found mainly in subjective
texts, as their main purpose is to give an ”emotional color to a verb“ (Pak and Paroubek
2010).

Figure 2.6 shows P T

n,p

, the comparison between negative and positive tweets. First of all,
it is remarkable that the tags are not as discriminating as for P T

s,o

. The relative differ-
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ences between the occurrences in the two classes are much smaller overall. Nevertheless,
there are tags like superlative adverbs (RBS), such as most and best, which significantly
occur more often in positive tweets. Another very discriminating tag is POS for pos-
sessive endings. One possible explanation for this could be that people seldom tweet
about things they own, but which they do not like. Tweeting about those would be the
same as admitting one made a wrong decision when buying the product. In general,
many people probably do not like to admit that they made a wrong decision.

In contrast, negative tweets tend to contain verbs in past tense (VBN, VBD). Pak and
Paroubek (2010) suggest as a possible explanation that authors of negative tweets often
express some kind of loss or regret from the past. Furthermore, they list some examples
of the most frequent of those verbs, such as missed, bored, gone, lost, stuck, taken.

Finally, the authors mention the tag WH$ (possessive wh-pronoun whose) as especially
interesting. The positive set of tweets has a very high occurrence frequency of the tag,
which was unexpected to them. Looking at the corpus they discovered lots of tweets
like the following:

dinner & jack o’lantern spectacular tonight! :)
whose ready for some pumpkins??

This reveals that people tend to use whose as slang for who is, instead of its original
possessive meaning. Nevertheless, even though TreeTagger was not developed to handle
informal language and slang, it seems to perform reasonably well as a generator for
discriminative features for Twitter Sentiment Analysis.

To overcome the issues of TreeTagger, Saif et al. (2012b) suggest to use a tagger called
TweetNLP, which was developed at the Carnegie Mellon University specifically for
tagging tweets4. For details on its construction and progress see Gimpel et al. (2010),
Owoputi et al. (2013). The creators of the tagger write on their website:

We provide a fast and robust Java-based tokenizer and part-of-speech tagger
for Twitter, its training data of manually labeled POS annotated tweets, a
web-based annotation tool, and hierarchical word clusters from unlabeled
tweets.

The tagger comes with a Java API and also brings a comfortable command line tool.
It is able to handle the informal language of tweets very well. There are even special
POS tags for tweet specific tokens like emoticons, hashtags, mentions and URLs.

ikr smh he asked fir yo last name so he can add u on fb lolol
! G O V P D A N P O V V O P ^ !

Table 2.3: Example of a tweet tagged with TweetNLP, taken from Owoputi et al. (2013).

Table 2.3 shows a rather extreme example of nonstandard orthography, abbreviation
and misspelling. Its meaning is basically He asked for your last name so he can add you
on Facebook.. The tagset differs from the one of TreeTagger, which is using the Penn

4http://www.ark.cs.cmu.edu/TweetNLP/

http://www.ark.cs.cmu.edu/TweetNLP/
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Treebank-style tagset (PTB). A complete list can be found in the appendix of Owoputi
et al. (2013). However, recently a PTB-style tagset was released for TweetNLP, in case
one wishes to use that instead5.

The tagging works remarkably well. For example the abbreviation ikr, which means
I know, right? is correctly tagged as an interjection (!). Besides this, the phrase yo,
meaning yours, is recognized as a possessive pronoun (D). As a final example, it even
recognized fb as an abbreviation for Facebook and tags it as a proper noun (^).

In conclusion, POS tagging can provide valuable features for Twitter Sentiment Anal-
ysis, which is shown by its incorporation in multiple current methods (Barbosa and
Feng 2010, Pak and Paroubek 2010, Agarwal et al. 2011, Saif et al. 2012b, Bakliwal
et al. 2012). Although POS tags are not used as stand-alone features, they often yield
improvements when harnessed additionally to n-grams or other language models. Still,
to the best of my knowledge there is no investigation comparing the performance of
the sentiment classification with regard to the choice of tagger and tagset. Thus, the
performance has to be tested and compared.

2.4 Overview of Current Research

In this section, an overview of current research of Twitter Sentiment Analysis is given,
clarifying which combinations of classifiers, preprocessing and features have been used
successfully so far. Only publications with objectives closely related to the objectives
of this thesis are listed. Other approaches are not considered here since the focus of
this thesis is to take a closer look at the standard approaches first. Furthermore, the
datasets used to acquire those results are looked at and discussed.

One of the earliest works is Go et al. (2009). In this work, the two class classification
problem, distinguishing between positive and negative sentiment, is solved. They trans-
ferred the usage of emoticons as noisy labels (see also section 3.1) from Read (2005) to
the domain of Twitter Sentiment Analysis. Overall, they collected 1.6 million tweets as
training data, labeled by recognition of emoticons. Regarding preprocessing, they used
spell correction and replaced the tweets specific entities with wildcards. They evaluated
unigram, bigram and POS tag features for SVMs, Naive Bayes and Maximum Entropy
classifiers. SVMs performed best using unigrams with an accuracy of 82.2%. Using
Naive Bayes classifiers with La Place smoothing and a combination of unigram and
bigram features achieved an accuracy of 82.7%. The lead was taken by the Maximum
Entropy classifier, reaching 83% accuracy, also using the combination of unigrams and
bigrams. However, the authors do not provide any information on the significance of
the differences. Furthermore, their test dataset consists of only 359 tweets. Addition-
ally, they do not describe how exactly the test data was created or make any statement
about its quality. The results are at best an indication what may perform well and
sound conclusions can not be drawn from them.

Pak and Paroubek (2010) follow the approach of Go et al. (2009) using emoticons as
noisy labels for training data. In addition, they are using the same dataset to evaluate

5See http://www.ark.cs.cmu.edu/TweetNLP/ for more information.

http://www.ark.cs.cmu.edu/TweetNLP/
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their method. Hence, the credibility of the results suffers from the same drawbacks
mentioned before. Regarding preprocessing, tweet specific entities along with emoticons
have been removed from the training data. Furthermore, stopwords are also excluded.
Basis of the method is a Naive Bayes classifier with a combination of bigrams and POS
tags as features, smoothed using Jelinek-Mercer smoothing with ↵ = 0.5 (each set of
features contributes equally to the probability for a class). Their goals were not to find
an algorithm outperforming others but to investigate the usability of features. They
found that bigrams perform better than unigrams and trigrams and that large numbers
of training samples increase the classification accuracy. Finally, they introduced two
measures to determine the quality of features, which did not lead to an improvement
in general.

Agarwal et al. (2011) introduced a special set of features for SVMs, called senti fea-
tures. Those senti features can be natural numbers, like the count of negations within
the tweet, real numbers, such as the percentage of capitalized text, or binary, for ex-
ample the presence of an exclamation mark. Incorporating their senti features along
with the unigram features raised the accuracy by about 4%. However, no significance
intervals are given here and the overall accuracy is just 75.39%. As testset they acquired
11.875 hand labeled tweets from a commercial source. Those tweets were collected by
sampling the Twitter API, translating them using Google Translate6 and finally letting
people label them. After removal of tweets which have been labeled as junk, 8752 tweets
were left to work with. However, the translation step is fairly questionable. Even though
Google Translate works remarkably well, a translated tweet will differ a lot from the
same tweet originally written in English. For example, Google Translate would never
output the informal language most authors of tweets use. Hence, this dataset is also not
suitable for a sound and general comparison of methods. However, the results suggest
that handcrafted features for SVMs can possibly yield improvements.

Liu et al. (2012) introduced the idea of using a combination of noisy labels like emoticons
and hand labeled data. A Naive Bayes classifier is the basis for their method. Using
Jelinek-Mercer smoothing, they combine a hand labeled training set and a emoticon
model with the features being unigrams only. In addition, tweet specific entities were
replaced with wildcards, stopwords were removed and stemming was performed. Both
classification problems, the subjectivity classification (distinguishing between neutral
tweets and those carrying sentiment) and the two class classification of positive and
negative sentiment (polarity classification) were investigated. While the distant super-
vised language model (emoticons) achieved an accuracy of only 72%, the incorporation
of just 768 hand labeled tweets raised this up to about 82% for polarity classification.
The results for subjectivity classification are very similar. As a dataset, they used the
Sanders corpus7, consisting of 5,513 hand labeled tweets. After filtering out non-English
and spam tweets, 3,727 tweets were left for experimenting. This fact alone lets arise
doubts about the quality of the dataset. How can there still be spam tweets in there,
when it was hand labeled? Furthermore, those tweets were collected querying the Twit-
ter API for only four keywords (Apple, Google, Microsoft and Twitter). Thus, it is very
biased towards tweets about those entities. Nevertheless, it serves the purpose of vali-

6http://translate.google.com
7http://www.sananalytics.com/lab/twitter-sentiment/

http://translate.google.com
http://www.sananalytics.com/lab/twitter-sentiment/
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dating they ideas of Liu et al. (2012). But for a general comparison to other methods
it is not suited well.

Saif et al. (2012a) also use a Naive Bayes classifier with Jelinek-Mercer smoothing.
Their basic model are unigram features, smoothed with semantic features. They found
what they call sentiment-topic features to perform best. Sentiment-topic features
are generated by a clustering method for words, which clusters them by sentiment and
topic. The unigram model is then augmented with the sentiment topics present in the
tweets. For preprocessing, they used tweet specific entity replacement and repeated
letter spelling correction. To compare their approach with others, the dataset of Go
et al. (2009) has been used. Although the approach outperforms the other approaches
by a few percent (it achieves 86.3% accuracy), the test suffers from the afore mentioned
drawbacks. Furthermore, no statements regarding significance of the differences are
made. However, Saif et al. (2012a) have done some pioneer work regarding the integra-
tion of semantics into Twitter Sentiment Analysis. Yet, semantic features are a recently
emerging approach which will not be investigated in this thesis.

Finally, the work of Bakliwal et al. (2012) is the one closest related to the work done in
this thesis. The authors are using an unigram model as baseline. Afterwards, prepro-
cessing techniques are incorporated step by step to monitor their effectiveness. Unfortu-
nately, there are no mentions of significance tests. However, their results indicate that
spelling correction, stemming, and stop word removal increase the accuracy. The best
results were achieved by SVMs in conjunction with sentiment features vectors, similar
to those of Agarwal et al. (2011). On the dataset from Go et al. (2009) the method
reached 88% accuracy. Futhermore, another dataset called Mejaj (Bora 2012) is used.
It is very similar to the other one, but instead of using emoticons as noisy labels, it
uses a handcrafted list of 40 words, 20 for each sentiment. Those test sets are neither
very large, nor is there any information about the hand labeling process and the quality
criteria. Thus, even though the results are interesting indications of the authors claims
to be correct, a final conclusion can not be drawn without further evidence.

Finally, one has to draw the conclusion that the evaluation methodology seems to be
overall lacking. Researchers seldom provide information on how exactly the test data
was labeled. Probably every tweet was only labeled by one person. Moreover, the
datasets used are often very small, in the range of 300-500 tweets in total. Hence, out-
performing another method by 3% just means it classified nine more tweets correctly,
which is not that much of a difference. To conclude, there are lots of contradictory
results regarding various hypothesis about preprocessing and feature selection. As it
would go far beyond this thesis to take a closer look at all the afore mentioned ap-
proaches, only a few can be analyzed.





3 Performance Investigation

First of all, the construction of a high quality dataset is described and it is analyzed with
regard to the various preprocessing techniques and features introduced in the previous
chapter 2. Afterwards, the methodology to compare the various combinations of classi-
fiers, features and preprocessing techniques will be explained. Finally, the comparison’s
results are presented and discussed.

3.1 Construction of a General Purpose, High Quality Dataset

At first, the quality criteria for a test dataset are discussed, followed by an explanation
of the methodology for constructing such a dataset. Finally, some statistics about the
dataset are provided and discussed.

3.1.1 Quality Criteria

The analysis of a dataset’s quality for the general problem of Twitter Sentiment Anal-
ysis is mostly neglected in current literature (see also section 2.4). Any experimental
results can only be as good as the quality of the test used to measure performance. In
conclusion, before starting any experiments, quality criteria for the dataset have to be
defined and respected when creating it.

Primarily, a desirable feature of a testset is to reflect human judgement. The aim of the
whole field of Twitter Sentiment Analysis is to create algorithms which are able to decide
about a tweet’s sentiment as a human judge would. Thus, it is crucial that the testset is
labeled by humans. Another approach would be to use multiple different classification
algorithms and just take into account the tweets those algorithms all agree on. However,
the multi-algorithm approach is not a good idea, because it is not guaranteed that such
a dataset represents human judgement well.

Moreover, the size of the dataset plays an important role. Comparing the performance of
two algorithms with a dataset of only 300 tweets is not very meaningful. Outperforming
another algorithm by 3% means only nine more tweets have been classified correctly.
The reason for not providing any confidence intervals for those experiments probably
is that the results are not statistically significant due to the small size of the dataset
(see also section 2.4). Hence, the dataset should be as large as possible to be able to
conclude useful insights from the experiment’s results.

When creating a dataset one has to keep in mind that not even two humans are able
to agree on the sentiment for every tweet they are presented with. Therefore, every
tweet should be rated by multiple people. Only tweets for which the various human
judges reach agreement about the sentiment should make it into the dataset. For
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the same reason, more than two people should label the dataset. To reach a broader
representation of human sentiment judgement, the labeling should be done by as many
people as possible.

Another point is topical bias. Assumed, the tweets of the dataset have been collected
by querying the Twitter API for a given set of keywords, all tweets in the dataset would
be about the same few topics. Hence, the actual test results would not imply the al-
gorithm’s performance of identifying sentiment of tweets, but identifying the sentiment
of tweets about certain topics. While this behavior could be desired for some experi-
ments, for general investigations regarding Twitter Sentiment Analysis it is not. But
even when collecting randomly sampled tweets from the Twitter API, one has to think
about the time frame. While one could collect more than enough tweets at one day, it
is not advisable to do so. On one particular day, some event with great public impact,
such as the Eurovision Song Contest for example, could have taken place. Thus, a large
majority of tweets would be just about this topic and also result in strong topical bias.
To solve this problem, one could just sample tweets over a longer time frame.

An informal experiment, which I conducted by looking at tweets from the random
stream, suggested that most of these tweets are about peoples everyday life. It could
be beneficial for the dataset to manually inject some tweets about certain topics like
events, companies and products. So the test would reflect a broader variety of topics
and would not be biased towards people’s everyday life.

To conclude, the dataset should be reasonably large, labeled and validated by multiple
people and the tweets used should be collected within a wide time frame, in order to
make sure there is no topical bias.

3.1.2 Labeling the data

Within the course of another research project1 about 43.5 million tweets have been
collected. Of these, 33 million are randomly sampled from the Twitter API, the re-
maining 10.5 million tweets are focussed on certain events, such as the WWDC2, E33,
the CEBIT4 or the GoogleIO5 and others. These events also cover certain products and
companies, such as Google, Samsung, Apple, Sony, the iPhone, the XBox, the Playsta-
tion and others. All those tweets have been collected between June 2012 and August
2013. Hence, when sampling randomly from this collection, the resulting dataset fulfills
all the afore mentioned quality criteria.

Once the data has been set up, an interface for the labelers has to be provided to tag
tweets with their sentiment, so the labeling process can be done comfortably. To achieve
this, a Ruby on Rails6 web application has been implemented. Using a web application
makes the labeling process easily accessible for the labelers. Ruby on Rails is the tool

1http://datamining.informatik.uni-osnabrueck.de/de/Start.html
2http://www.apple.com/de/apple-events/june-2013/
3http://www.e3expo.com
4http://www.cebit.de
5https://developers.google.com/events/io/
6Ruby on Rails is a full stack web application framework, see http://rubyonrails.org

http://datamining.informatik.uni-osnabrueck.de/de/Start.html
http://www.apple.com/de/apple-events/june-2013/
http://www.e3expo.com
http://www.cebit.de
https://developers.google.com/events/io/
http://rubyonrails.org
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of choice here because it is one of the best frameworks to create stable applications in
short time, see Haldenwang (2011) for a more in-depth discussion on this topic. The
application has to fulfill the following requirements:

• An interface has to be provided to import the sampled tweets that should be
labeled.

• The effort for the labeler has to be minimal. People tend to get inattentive when
the work they are doing is to uninteresting and takes too long.

• A tweet should be labeled with one of the following labels: positive, negative,
objective, dismissed. The label dismissed is used for tweets for which the labeler
was not able to decide of which sentiment the tweet was. This may happen if he
did not understand its meaning, or because it is just not decidable. Obvious spam
tweets written by bots also have to be dismissed.

• To make full use of the labelers workforce, a tweet has to be tagged with one
or more topics from the following list: Celebrity, politics, product, company, wis-
dom_and_quote, event, entertainment, misc. The category politics represents
politicians, political events and political decisions. Sports, music, films and other
entertainment related entities are represented by entertainment. For tweets which
do not fit under any of these topics, the category misc has been introduced. This
data can then be used to observe the topic distribution and may also be used for
other experiments related to a tweet’s topic.

• Once enough tweets are labeled, a second validation pass has to be performed.
Each tweet needs to be labeled again by a second person other than the initial
labeler. Only those tweets for which the initial labeler and the validator agreed
upon the tweet’s sentiment make it into the testset.

• Each labeler has to login using a user name and a password. This serves two
purposes. First of all, it prevents unauthorized access to the application so that
only trusted labelers can label tweets. Secondly, in order to assign a correct tweet
for the validation phase, the application has to know who is labeling right now.

At first, a data model has to be defined. Figure 3.1 shows an Entity Relationship
Diagram (ERD) of the resulting data model. It basically consists of two entities, Tweet
and Category. The entities are connected with a many-to-many relationship because a
tweet may be about more than one topic. The attribute content includes the tweets text.
In original_id the tweets id generated by twitter is saved. This id is needed to make
sure there are no duplicate tweets in the dataset. A simple unique index ensures this
automatically while importing the data. The attribute created_at represents the time
the tweet was written. Within the field label the label assigned in the first phase is saved,
whereas label_validation represents the label given by the second labeler in phase two.
Accordingly, labeler holds the user name of the initial labeler, whereas validation_labeler
includes the validators user name. One could have introduced another entity such as
Label and create a one-to-many relationship with Tweet. But for reasons of simplicity
this has been consciously denormalized.
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Figure 3.1: Entity Relationship Diagram for the labeling applications data model. Primary
keys are artificial id attributes. They are not shown here.

Regarding the import, one has to provide a JSON7 file in the format shown in listing
2, which is basically an array of JSON objects containing the fields content and orig-
inal_id. This file has to be placed within the applications data directory. Since this
step is only performed once, there is no need for a web interface. The simple command
line invocation rake import starts the import process. Tweets already existing in the
database, identified by their original_id, are not imported again.

1 [
2 {
3 "content": "She cheated the English test :P",
4 "original_id": 229894936642859008
5 }
6 ]

Listing 2: Example of format for a JSON data file that can be imported, containing one
tweet.

Finally, the user interface has to be developed. When visiting the applications URL, the
user has to authenticate with basic HTTP authentication8. Afterwards he is presented
with the labeling interface, which is the only page of the application. Figure 3.2 shows
a screenshot of the designed interface. At the top of the page, the user is shown the
tweet to be labeled. Directly below that, there are four buttons indicating the possible
labels with intuitive colors. Green is for positive, blue is for objective, red is for negative
and black is for dismiss.

Before pressing one of those buttons to get to the next tweet to be labeled, the user
has to pick the categories. As default, misc is selected, as this fits the majority of

7http://www.json.org
8http://en.wikipedia.org/wiki/Basic_access_authentication

http://www.json.org
http://en.wikipedia.org/wiki/Basic_access_authentication
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Figure 3.2: Screenshot of the labeling web interface.

tweets. Hence, in most cases, the user does not have to pick any category. However,
when the category is not misc, another one can be selected by just clicking on it. To
select multiple categories, one has to hold down the control key (CTRL) while clicking.
Finally, when the user has finished, he presses one of the buttons and is automatically
presented with the next tweet. The interface stays exactly the same for both phases.
The idea behind that is that the validator should not know which label the tweet
initially has been labeled with in order to minimize any bias. To switch the mode an
internal flag within the application has to be changed. This influences the choice of the
presented tweets according to the above mentioned requirements and saves the label to
the corresponding attributes.

When both phases, initial labeling and validation, are completed, the data can be
exported via another command line invocation: rake backup:create. The format is
very similar to that shown in listing 2, but additionally includes the attributes presented
in figure 3.1.

3.1.3 Test Dataset Statistics

Overall, 10,176 tweets have been labeled by 23 labelers, including one researcher from
the Institute of Computer Science of the University of Osnabrück, 21 students who took
part voluntarily and myself. The results of the initial labeling are presented in table
3.1. From those 10,176 labeled tweets, 5,726 (56.2%) have been discarded. This large
amount of unusable tweets highlights once again how tedious it can be to acquire a
dataset of high quality. Less than half of the tweets looked at can possibly be kept.

It is interesting that the majority of the non-dismissed tweets (38.4%) is of negative
sentiment. One possible explanation for this could be that people tend to complain
about negative experiences rather than writing about positive ones. For example, no-
body would tweet that he received his parcel in time, whereas people tend to complain
when it is delayed. Another surprising fact is that positive tweets (29.1%) are even
outnumbered by the objective ones (32.4%).
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Label # % non-dimissed
positive 1,296 29.1%
negative 1,711 38.4%
objective 1,443 32.4%
dismissed 5,726 -

Table 3.1: Distribution across labels after
initial labeling. The last column shows
the percentage of the label in relation to
the number of non-dismissed tweets.

Label # % validated % retained
positive 910 28.4% 70.2%
negative 1,328 41.4% 77.6%
objective 966 30.14% 66.9%

Table 3.2: Label distribution across la-
bels after validation phase. The second
column shows the labels percentage of
successfully validated tweets, the third
column shows the percentage of tweets
that have been retained from the origi-
nal labeling.

Table 3.2 shows the class distribution after the validation phase. Of the 4,450 initially
non-dismissed tweets, 3,204 (72%) could be retained, while 1,246 (28%) had to be
discarded due to validation labeler disagreement. The distribution across classes shifted
slightly more towards the negative class, which makes up 41.4% (38.4% after initial
labeling) of the non-discarded tweets. Hence, the other two classes slightly decreased in
size with positive class still presenting the minority. The negative class has the lowest
disagreement. Overall, the validators agreed with the initial labelers on 77.6% of the
negative tweets. For the positive class this were just 70.2%, objective tweets were agreed
on the least with just 66.9%. This indicates two interesting conclusions. Firstly, two
humans were able to agree on a tweet’s sentiment only for 72% of tweets. Hence, an
algorithm achieving an accuracy above 72% can be considered performing reasonably
well. Secondly, the classification of a tweet as negative seems to be easier for humans
and is more commonly agreed upon. Thus, an interesting question is: Will this be the
same for algorithms?

Initial Label  Positive  Negative  Objective  Dismissed
positive - 78 (6.0 %) 279 (21.5 %) 29 (2.2 %)
negative 89 (5.2 %) - 267 (15.6 %) 27 (1.6 %)
objective 195 (13.5 %) 220 (15.2 %) - 62 (4.3 %)

Table 3.3: Disagreement matrix. Rows denote the initial label, columns the number of
conflicted validations with the respective validation label.

Due to the surprisingly high rate of disagreement, a closer look at the conflicts promises
interesting insights. Table 3.3 presents a disagreement matrix. The rows represent the
initial label, the columns the validation label. The elements in the matrix indicate the
number (and percentage) of tweets which were initially labeled with the row label, and
were labeled with the column label in the validation phase. This data also reveals inter-
esting facts. First of all, the rate on which initially labeled tweets are dismissed is fairly
small (2.2%, 1.6% and 4.3%). Thus, all labelers seem to have a similar understanding
of which tweet’s sentiment is undecidable or which tweets are spam. Moreover, con-
flicts between negative and positive are also fairly small. Only 6.0% of the validated
tweets have been initially labeled positive and got negative as validation class. The
other way around, only 5.2% were initially labeled negative, and have been validated
as positive. Thus, humans mostly seem to agree upon those two, very opposite classes.
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However, distinguishing those from objective tweets seems to be much harder for hu-
mans. The disagreement rate between positive/negative and objective extends from
13.5% to 21.5%. This kind of raises the bar for algorithms performing two class classifi-
cation between negative and positive tweets, as two humans agree upon such a tweet’s
sentiment in about 89% of the time.

Topic Before Validation After Validation Retained
misc 2,565 1,896 73.9%

product 659 489 74.2%
event 421 318 75.5%

company 324 231 71.3%
wisdom_and_quotes 302 183 60.6%

celebrity 284 194 68.3%
entertainment 159 102 64.2%

politics 92 64 69.6%

Table 3.4: Topic distribution before and after validation with percentage retained after vali-
dation.

Finally, some statistics are presented on the distribution across topics in table 3.4. The
first column denotes the topic’s name, in the second column the number of tweets tagged
with the topic in the initial labeling phase is given, column three shows the numbers of
non-conflicted tweets after validation and the final column presents the percentage of
tweets retained after the validation phase. Note that a tweet can be tagged with multiple
topics, hence, the numbers do not sum up to the numbers of tweets in the testset. As
expected, the topic misc is prevalent. It is neither very surprising that politics is the
topic with the least taggings. Twitter is mainly used by relatively young people who
are, according to the general opinion, not very interested in politics. Hence, sampling
randomly from the twitter stream does not yield many tweets about politics. However,
it is interesting that product is the second place. This is an indicator that harvesting
tweets for marketing purposes can be very fruitful. Furthermore, tweets about a product
have a fairly high rate of sentiment agreement (74.2%). Topics like company or event
are not as present but their agreement rate is still decent. However, deciding on the
sentiment of tweets about topics such as wisdom_and_quotes, celebrity, entertainment
and politics seems to be harder, the agreement rate is below 70%. Although the topic
data is not used in this work, it still provides some interesting insights and may be
useful for other investigations in the future.

It would also be interesting to perform an analysis of how well the features introduced
in section 2.3 separate the classes from one another. Unfortunately, the number of
tweets is still very small. Some informal experimentation revealed that most of the
tokens occur only once and hence the results of such an investigation would not provide
further insight. However, the following section presents such an analysis on a fairly
large training corpus.
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3.1.4 Collection and Analysis of Training Data

Collecting training data is done using the approach of Go et al. (2009). The idea is
to use emoticons as noisy labels. Tweets including happy emoticons like :-) have a
high probability to be of positive sentiment, whereas tweets including sad emoticons
like :-( tend to be negative. As discussed in section 2.4, this method has already
been validated multiple times, by using this training data to evaluate hand labeled test
data. One million positive and one million negative tweets were extracted from the 43.5
million tweets corpus introduced in section 3.1.2, using the emoticon list shown in table
3.5.

Positive Emoticons Negative Emoticons
:], :-), :), :o), :], :3, :c), :>, =], 8), =), :}, :^), >:D, :-D, :D,
8-D, 8D, x-D, xD, X-D, XD, =-D, =D, =-3, =3, 8-), :-)), :*,
>;], ;-), ;), *-), *), ;-], ;], ;D, ;^), >:P, :-P, :P, X-P, x-p, xp,
XP, :-p, :p, =p, :-b, :b, :’-), :’)

:[, :-(, :(, :-c, :c, :-<,
:<, :-[, :[, :{, :-||, :@,
D:<, >:\\, >:/, :-/,
:/, :\\, =/, =\\, :S,
:’-(, :’(

Table 3.5: Emoticons used as noisy labels, separated by commas.

Acquisition of objective training data poses a yet unsolved problem. One common
approach is to consider tweets of accounts from newspapers as objective. However,
those tweets often contain the headlines of news articles which carry certain sentiments,
depending on the news. For example, the headline There were 43 innocent children
murdered for no reason! obviously would be considered negative by the majority of
humans. Hence, this work is concentrated towards discriminating only between positive
and negative tweets because no objective training data could be obtained.

X 2 Analysis of Feature Types

First of all, a so called X 2 analysis9 is performed for each feature introduced in section
2.3. The test provides insight into whether the difference in occurrence of a feature for
the two classes positive and negative is statistically significant. Features with occurrence
frequencies below five can not be handled and hence are discarded for the test. For
example, if a word occurs twice in a positive context and once in a negative context,
this value would not be considered significant. In contrast, if the word occurred 2,000
times in a positive context and 1,000 times in a negative one, the difference would be
significant. As confidence interval, the standard ↵ = 0.05 is used, meaning a difference
is considered significant if its probability of being random is below 5%.

Results of the analysis and some general statistics per feature are presented in table
3.6. The first column denotes the name of the feature, in the second column the total
number of different features is presented. The column “Once” indicates the percentage
of features which occurred only once in the whole corpus. Column “< 5” presents the
percentage of features which occurred more than once but less than five times and

9This commonly statistical test is not explained here, for details see Greenwood and Nikulin (1996).
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hence also can not be considered. The column “Insignificant” denotes the percentage
of features which occurred more than five times but with a difference in occurrences
that does not significantly differ between the negative and positive classes. Finally, the
columns “Positive” and “Negative” present the percentage of features which significantly
more often appear in tweets of the respective class.

Feature Type Total Once < 5 Insignificant Positive Negative
unigrams 1,560,680 78.4% 16.5% 3.6% 1.0% 0.5%
bigrams 6,772,784 78.9% 14.9% 4.4% 1.0% 0.8%
trigrams 15,751,229 84.6% 12.0% 2.3% 0.6% 0.6%

subgrams3 66,793 24.4% 19.8% 36.0% 17.2% 2.7%
subgrams4 528,192 32.3% 30.1% 29.0% 7.2% 1.4%
pos-default 26 3.8% 3.8% 3.8% 53.8% 34.6%

pos-treebank 44 0.0% 2.3% 4.5% 61.4% 31.8%

Table 3.6: X 2 analysis of the training corpus.

This data suggests some interesting conclusions. First of all, it is very surprising that for
all the n-gram feature types still so many tokens appear just once in the whole corpus.
For n � 2 it was expected that the data would become more sparse. However, 78.4% of
unigrams occurring just once is also very surprising. One possible explanation for this
could be that named entities appear as single unigram. This includes mentions, loca-
tion, product and company names, URLs and hashtags. Another possible explanation
can be a vast amount of informal language, spelling mistakes, and abbreviations. For
higher order n-grams this effect becomes even stronger, as those are combinations of
the unigrams. Going from unigrams to bigrams, the one time occurrence rate is stable,
while rising to about 6% when using trigrams. The percentage of tokens occurring less
than 5 times is also above 12% for all n-gram features. Considering the average rate of
insignificant features for n-grams is about 3%, there is not much room left for signifi-
cant features, their rates being 1% and lower. These low rates of significant features are
very surprising, as n-grams have been reported to perform reasonably well (see section
2.4).

Looking at the sub-word level n-grams (subgrams), one notices a much smaller per-
centage of insignificant features. For both, subgrams3 and subgrams4 the summed
percentage for Once and < 5 is smaller than Once alone for the n-grams. The overall
number also is reasonably smaller. Only 66,793 subgrams3 tokens have been extracted,
which is a considerable large difference to 1,560,680 unigrams (just 4% of the size).
Since the rates of significant tokens is overall larger than for n-grams, one may assume
that subgrams are better features for classification so far.

Finally, there are the two POS tagsets to look at. The feature type pos-default denotes
the tweet specific tagset from TweetNLP, whereas pos-treebank uses a standard tagset.
The number of tokens for the POS tagsets equals the number of different POS tags which
appeared in the corpus. It is remarkable that most of the POS tags are significantly
discriminating between positive and negative tweets. Thus, POS tags seem to be very
good features for positive/negative classification.
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One observation that can be made for all features is the higher rate of significantly
positive tokens compared to the rate of the negative ones.

Preprocessing Statistics

Another X 2 analysis is performed after applying the preprocessing steps introduced in
section 2.3.3 to unigram features one at a time. The results are presented in table 3.7.

Acronym expansion was done with the same dictionary used by Agarwal et al. (2011),
consisting of more than 5,000 slang acronyms. However, it had no statistically significant
effect. Only 395 unigrams were replaced, making up just 0.03% of the vocabulary.

Similar effects are observable for stopword removal. The stopword list provided by
MySQL for their full-text search engine10 was used here. Applying stopword removal
reusulted in a reduction of the vocabulary of less than 0.5%.

Spelling correction, as described in 2.3.3, achieved a reduction of 1.6%. Nevertheless,
the percentage of significant tokens did not change notably.

Stemming, performed using the commonly known Porter Stemmer algorithm, reduced
the size of about 3.8%. Unfortunately, the percentage of significantly discriminating
tokens dropped further from its already low percentage.

Preprocessing Total (Reduction) Once < 5 Insignificant Positive Negative
nothing 1,560,680 (100.00%) 78.4% 16.5% 3.6% 1.0% 0.5%

acronyms 1,560,285 (99.97%) 78.4% 16.5% 3.6% 1.0% 0.5%
stopwords 1,560,193 (99.96%) 78.4% 16.5% 3.6% 1.0% 0.5%
spelling 1,536,341 (98.4%) 78.3% 16.6% 3.7% 1.0% 0.5%

stemming 1,502,417 (96.2%) 79.1% 16.3% 3.2% 0.9% 0.4%
entities 455,309 (29.17%) 65.5% 20.6% 9.9% 2.5% 1.5%
lemmas 43,520 (2.7%) 25.1% 25.6% 32.4% 11.2% 5.8%

Table 3.7: X 2 analysis of unigrams combined with preprocessing.

Entity replacement and lemmatization seem to be the only promising preprocessing
techniques here. Replacing entities reduces the vocabulary size to 29.7% of its initial
value. Moreover, the rate of tokens occurring just once is reduced by more than 10%
and the percentage of significantly discriminating features also increased noticeable.
The reduction of lemmatization to just 2.7% of the corpus’ original size is surprising
though. The lemmatizer used is the NSLinguisticTagger11 provided by the Mac OS
standard library. It seems to ignore words it is not able to lemmatize, hence the high
reduction. However, the rates of significant tokens seems very promising.

10http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
11https://developer.apple.com/library/ios/documentation/cocoa/reference/

NSLinguisticTagger_Class/Reference/Reference.html

http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
https://developer.apple.com/library/ios/documentation/cocoa/reference/NSLinguisticTagger_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/cocoa/reference/NSLinguisticTagger_Class/Reference/Reference.html
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Conclusions

To summarize the analysis of the noisy labeled training data, one could say that POS
tags seem to be the features discriminating best, followed by subgrams. Regarding
preprocessing, most of the techniques only affect small parts of the corpus and hence
are not very promising. Nevertheless, entity replacement and lemmatization seem to
have a positive impact on the classification performance. These results only reflect the
dicriminativity between the two classes which have been noisy labeled with emoticons.
How valuable those features really are has to be investigated by evaluating the hand
labeled test data.

3.2 Measuring and Comparing Performance of Classifiers

As discussed in section 2.4, experimental results regarding Twitter Sentiment Analysis
are often not directly comparable. Most of the time, this is the case because researchers
do not provide any data on significance, but only report accuracy. Accuracy is the
simplest measure coming to mind when measuring classification performance. It can be
computed with the following formula:

Acc(c, w) =
c

c+ w
. (3.1)

The variable c represents the number of correct classifications and w denotes the number
of incorrect classifications. Accuracy is not a bad measure in general and sums up the
overall performance of an algorithm. However, to actually get an idea whether two
results differ significantly from one another, one has to perform a statistical test.

Since two class classification can be considered as a bivariate frequency distribution with
one degree of freedom (the classifier is fixed and there are two attributes for it), one
can use the commonly known X 2 significance test, for more details see Greenwood
and Nikulin (1996). To compute the X 2 value, one can use the following formula

X 2
(c1, w1, c2, w2) =

n · (c1 · w2 � c2 · w1)
2

(c1 + c2) · (w1 + w2) · (c1 + w1) · (c2 + w2)
, (3.2)

where c
i

denotes the number of correct classifications from classifier i, and w
i

denotes
its wrong classification count. The total number of observations is given by n = c1 +
w1 + c2 + w2. Finally, to determine whether the difference is significant, one has to to
compare the resulting value of X 2 against a given threshold. For the common ↵ = 0.05
this is 3.84. If the resulting value is higher than this threshold, the probability of the
difference in performance being random is below 5% and can be considered significant.

To get a deeper insight into an algorithm’s performance, one can take a closer look at
first and second order errors per class. Looking, for example, at the positive class, a
classification result is called true positive (t

p

) if the tweet has been classified positive
and actually is positive. It is called false positive (f

p

) when it is classified positive,
but is negative in reality. True negative (t

n

) denotes a tweet classified negative which
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actually is negative and false negative (f
n

) is a tweet classified negative which is
actually labeled positive. For the negative class, the actual numbers are the same, but
the values are mirrored. For example, the true positives of the class positive are the
true negatives of the class negative. Table 3.8 provides an example.

Positive Negative
t
p

705 1,067
f
p

261 205
f
n

205 261
t
n

1,067 705

Table 3.8: Illustration of the per class first and second order errors.

Due to the symmetry one can compute the accuracy from this values by arbitrarily
choosing one of the classes and using the following formula:

Acc(t
p

, f
p

, f
n

, t
n

) =

t
p

+ t
n

t
p

+ t
n

+ f
p

+ f
n

. (3.3)

Using this formula, the accuracy for the example in table 3.8 would be 79.2%. However,
for some applications it may be more important to minimize or maximize certain errors.
For example, when a company is interested in acquiring negative feedback regarding
their products, in order to be able to react to it, they do not want to miss out on any
negative tweet. Hence, for the negative class the number of false positives should be
small. To characterize such traits of an algorithm, the measures precision and recall
have been introduced. They can be computed as following:

Prec(t
p

, f
p

) =

t
p

t
p

+ f
p

(3.4) Rec(t
p

, f
n

) =

t
p

t
p

+ f
n

(3.5)

Precision is a measure for how many of the positive classifications are actually positive.
To rephrase this one could say: The higher the precision, the lesser the rate of examples
falsely assigned to the class. To continue the example from above, the precision for
the negative sentiment class is probably not that important for the company, as they
are only interested in capturing all negative tweets. Still, they are interested in a high
recall. High recall means that very few tweets of the class currently looked at have been
tagged with the other class. In other words: Recall indicates how many of the desired
tweets are actually retrieved.

Computing the values for precision and recall for the example data in table 3.8, the
positive class achieves 73.0% precision and 77.5% recall, while the negative class reaches
83.9% precision and 80.3% recall. In this case it is quite obvious for which class the
classifier performs best. But, for cases where this is not obvious, the so called F

�

measure has been introduced. It can be computed as following:

F
�

(precision, recall) = (1 + �2
) · precision · recall

�2 · precision+ recall
(3.6)



3.3 Determining Training Corpus Size per Feature and Classifier 41

The parameter � can be used to put more emphasize on precision or recall. Most of
the time it is set to one, hence the F1 score is just the harmonic mean of precision and
recall. For the given example this would result in an F1 score of 75.1% for the positive
class and 82.5% for the negative class.

However, in this work the per class precision and recall values are only reported and
not analyzed further. The main measure will still be accuracy, in order to be able to
compare the results with current methods.

3.3 Determining Training Corpus Size per Feature and
Classifier

Algorithms for Twitter Sentiment Analysis have very few parameters in general. First
of all, one has to choose which features to use. As soon as that is clear, a classifier has
to be chosen and the needed amount of training data has to be determined. This section
presents an investigation of various combinations of those parameters and it concludes
with a first baseline accuracy.

The two classifiers to be looked at are SVM and NBC, both introduced in chapter 2. For
each of those classifiers all features introduced in section 2.3 are evaluated with various
corpus sizes. The only n-grams evaluated are unigrams, bigrams and trigrams. Higher
orders of n-grams are too sparse to yield promising results. Subgrams are evaluated for
n = 3 and n = 4. Informal experimentation revealed that n = 2 does not provide good
discrimination and n > 4 approximates unigrams, as most of the words used in tweets
are rather short. POS tags are evaluated using TweetNLP with both its available tag
sets (tweet specific default and Treebank). To sum up, there are seven features to be
evaluated for two classifiers, resulting in 14 experiments.

The experiment itself starts by training the classifier with a small training size, using
tweets from the noisily labeled training tweets. In the next step the classifier is evaluated
at the hand labeled dataset. Accuracy and per class precision and recall are reported
as results. Those steps are performed for various training sizes. The first training size
is 1,000. It then is increased in steps of 1,000 until 10,000. Afterwards, the stepsize is
10,000 until up to 100,000. Finally, the sizes 200,000, 300,000 and 500,000 are evaluated.
The reasoning behind the non-linear increase of step size is that for smaller sizes stronger
differences will occur. For each of the 14 different configurations, 23 test runs have to
be performed, resulting in 322 runs in total. The significance of differences in results is
computed with the X 2 test.

Regarding SVM, only the linear kernel is used. As mentioned before, most text data is
linearly separable. Moreover, the non-linear kernels take much more computation time.
Where a linear kernel takes seconds to minutes for training (using LIBLINEAR), the
non-linear kernels (using LIBSVM) take several hours. Hence, using non-linear kernels
for this investigation would take weeks.

The NBC classifier only uses simple Laplace smoothing to deal with unknown features.
At this stage of the evaluation, no fallback models are used.
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To qualitatively evaluate the effects of training corpus size on the accuracy, the results
of evaluation are plotted. However, not all of the 14 plots are presented here for reasons
of space, just representative and particularly interesting ones are shown and discussed.
Table 3.9 presents all results though. Figure 3.3 shows the plot for NBC with unigram
features.
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Figure 3.3: Accuracy of NBC using unigram features with increasing training corpus size.

These results reflect what was expected: The larger the training corpus, the better the
accuracy. However, the improvements are no longer significant after reaching a certain
threshold. A notable fact is that with just 1,000 training tweets, the classifier already
achieves an accuracy of about 73%. Considering the fact that the X 2 analysis of features
revealed only about 1% of unigrams to be significantly differently distributed between
classes, this is very remarkable. The first noticeable peak is reached with a training
size of 50,000, resulting in 78.5% accuracy. After that the accuracy fluctuates, still
not significantly. The maximum of the experiment was reached with 300,000 training
tweets, providing 79,2% accuracy. Unfortunately, the differences to 50,000 and the
other peak at 80,000 are not statistically significant. Differences to larger training sizes
are also not significant. In conclusion, one could say that for NBC at least 50,000
tweets should be used as training data for unigram features. This is a surprising result.
One would have expected that much more has to be used due to the noise within the
training data. The plot for SVM unigrams looks very similar and for this reason is not
presented here. Moreover, subgrams (for both, SVM and NBC) also tend to behave
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quite similar, fluctuating at the beginning and then approaching a plateau, which is
why the respective graphs are also not shown here.
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Figure 3.4: Accuracy of SVM using bigram features with increasing training corpus size.

The graph for bigram features is also fairly interesting to look at. For the SVM classi-
fier, it is presented in figure 3.4. In comparison to the unigram graph the fluctuation
is much lower. This suggests that the amount of noise is smaller. One hypothesis re-
garding bigrams is that they are able to capture negations. Consider for example the
term not good. Using bigram features this would correctly be captured as negative.
However, unigrams will capture a negative occurrence for not and a negative occur-
rence for good. Because of good being a genuinely positive word that is counted as
negative, ignoring the negation just generates undesired noise. Using bigrams seems
to prevent such noise to some extent. The accuracy almost always improves with in-
creasing number of training tweets up to a significant maximum of 80.4% using 500,000
training tweets. The increases from 200,000, 300,000 and 400,000 are not significant
statistically, whereas the jump from 100,000 to 500,000 is. This further strengthens the
hypothesis of bigrams being much more sparse than unigrams because more training
data seems to continuously increase accuracy, probably due to increased coverage of
all existing bigrams. Even though the results suggest that further increase of training
corpus size may be beneficial, this cannot be evaluated in this work due to limited
computation time and memory. The graph is also representative for SVM trigrams and
NBC bigrams/trigrams. Because these very similar graphs provide no further insights,
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they are not presented here.
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Figure 3.5: Accuracy of SVM using tweet specific POS features with increasing training
corpus size.

The results when using POS tag features were the most surprising. Figure 3.5 presents
the graph for SVM with POS tags using the tweet specific test set. The other POS
tag related graphs look very similar and hence are left out. Right from the beginning
the accuracy is rather mediocre, about 58%. With increasing number of training tweets
it significantly drops below 50%. Hence, using POS tag features alone performs worse
than guessing when using too many training tweets. One indication for this behavior
is that POS tags have never been suggested as standalone features in literature before.
Considering the results of the X 2 analysis (see table 3.6), this is very surprising. While
most of the POS tags appear significantly more often in one of the classes, using them
as standalone features performs only slightly better than guessing, or even worse with
too much training data. Thus, POS tags should not be used as standalone features and
when combining them with other features one has to be careful not to use too much
training data, since that seems to only add noise and does not seem to be beneficial at
all.

Table 3.9 sums up the results of the experiment for all combinations of features and
classifiers. The bold faced accuracies mark the best results. Nevertheless, NBC un-
igrams/bigrams, SVM unigrams/bigrams and SVM subgrams4 are statistically indis-
tinguishable and have to be considered performing equally well. Still, looking at the
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absolute values, SVM slightly outperforms NBC. Moreover, bigram features achieve
higher accuracy than unigram features. This is surprising, as in literature NBC with
unigrams is used as baseline most of the time. It also is stated that SVM performs sig-
nificantly worse consistently. Obviously, this is not the case here, because both perform
equally well. Even more interesting is the performance of subgrams4 since it is on par
with unigrams and bigrams. This kind of feature has, to the best of my knowledge, not
been considered for Twitter Sentiment Analysis at all. The feature space for subgrams4
is just about 30% of the size of that of unigrams, and only about 10% the size of a
bigram feature space (see table 3.6). Nevertheless, it performs on par with these.

Feature Classifier Corpus Size Accuracy Prec+ Rec+ Prec- Rec-
Unigrams NBC 50,000 78.5% 71.9% 77.1% 83.5% 79.4%

SVM 80,000 80.0% 72.4% 82.3% 86.6% 78.5%
Bigrams NBC 500,000 79.4% 74.1% 75.7% 83.1% 81.9%

SVM 500,000 80.4% 72.8% 82.5% 86.8% 78.9%
Trigrams NBC 500,000 77.6% 71.6% 74.5% 82.0% 79.7%

SVM 200,000 74.7% 67.4% 73.0% 80.4% 75.8%
Subgrams3 NBC 80,000 65.0% 54.1% 92.2% 89.7% 46.4%

SVM 50,000 76.4% 69.5% 74.8% 81.8% 77.5%
Subgrams4 NBC 400,000 74.9% 63.6% 89.3% 89.9% 65.0%

SVM 100,000 79.0% 73.6% 75.5% 82.9% 81.5%
POS Default NBC 1,000 55.4% 17.5% 2.6% 57.8% 91.5%

SVM 20,000 58.1% 48.6% 51.6% 65.4% 62.6%
POS Treebank NBC 2,000 54.1% 46.5% 86.5% 77.5% 31.9%

SVM 1,000 64.2% 55.6% 59.9% 71.0% 67.2%

Table 3.9: Performance for smallest training size with significant differences. The statistically
indistinguishable best results are printed bold faced, the underlined values are the maximum
of the respective column.

Looking at the values of precision and recall per class also reveals some interesting
results. For example, NBC subgrams3 performs significantly worse with just about
65% accuracy. However, it achieves a positive recall of 92.2% and a negative precision
of 89.7%. Thus, it can identify positive tweets as positive very well and does not falsely
classify them as negative. However, it lacks the ability to identify negative tweets
correctly. A positive precision of only 54.1% and a negative recall of 46.4% indicates
that many negative tweets are classified as positive. Combining this classifier with
another one that achieves high positive precision and high negative recall may yield an
overall improvement.

To sum up the results, unigrams and bigrams for both classifiers and SVM using sub-
grams4 perform all on par. These results are statistically indistinguishable. POS tags
perform worse than guessing when using to much training data. NBC with subgrams3
performs mediocre but has strong positive recall and negative precision. As a conclu-
sion one could say that, even if canonical features are used, the classifiers performed
better than expected and the values of precision and recall provide hope for overall
improvement by combining classifiers according to their strengths and weaknesses. To
establish a single baseline to compare to, one could compute the average of the sta-
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tistically indistinguishable best results, leading to an accuracy of 79.46% (1,778 tweet
classified correct, 460 classified wrong).

3.4 Effects of Preprocessing

Investigating the effects of preprocessing techniques introduced in section 2.3.3 is done
by training SVM and NBC using unigram features, applying the preprocessing technique
currently looked at. As size of the training corpus, the preliminary experimentally
obtained minimum training size is used. Results are reported in form of accuracy and per
class precision and recall. Significance of improvement is tested against the established
baseline from section 3.3. Table 3.10 presents the results of the investigation.

Preprocessing Classifier Accuracy Prec+ Rec+ Prec- Rec-
Stemming NBC 78.2% 71.4% 77.3% 83.5% 78.8%

SVM 79.9% 72.7% 81.2% 86.0% 79.1%
Lemmatization NBC 78.2% 73.5% 72.4% 81.3% 82.1%

SVM 78.9% 70.9% 81.4% 85.8% 77.1%
SpellingCorrection NBC 78.5% 72.1% 76.9% 83.4% 79.6%

SVM 80.5% 73.2% 82.1% 86.6% 79.4%
NamedEntityReplacement NBC 77.9% 70.7% 78.1% 83.8% 77.8%

SVM 79.1% 71.9% 79.7% 85.0% 78.7%
NamedEntityRemoval NBC 78.8% 73.9% 74.1% 82.2% 82.1%

SVM 79.4% 72.0% 80.9% 85.7% 78.5%
StopwordRemoval NBC 77.7% 70.0% 79.3% 84.4% 76.7%

SVM 78.9% 71.2% 80.5% 85.4% 77.7%
AcronymExpansion NBC 78.4% 72.0% 76.7% 83.3% 79.6%

SVM 80.5% 73.1% 82.4% 86.8% 79.2%

Table 3.10: Results of the preprocessing investigation using unigram features preprocessed
with the respective method. Bold faced accuracies denote absolute improvements (not
significant) in comparison to the same classifier without the preprocessing.

None of the preprocessing steps yielded significant improvements compared to the av-
eraged baseline of 79.46%. Most of the absolute accuracy values are even below the
baseline. However, the bold faced accuracies are higher compared to the respective
classifier without the preprocessing. They are neither significant though. Using a com-
bination of those preprocessing techniques yielding absolute improvements also did not
improve the accuracy significantly. Values of precision and recall per class are also very
similar compared to the baseline.

There is only one conclusion that can be drawn here: The evaluated preprocessing
techniques do not significantly improve accuracy. However, they also do not make it
worse. Hence, when the size of the feature space becomes an issue, one could apply
those preprocessing techniques to deal with the curse of dimensionality without being
worried about the loss of accuracy. Thus, the common usage in current methods (see
also section 2.3.3) seems odd to some extent since the authors do not mention any
dimensionality problems. Yet, as it does not make things worse, no harm is done.
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3.5 Combining Features

In literature the current methods for Twitter Sentiment Analysis claim to achieve better
results by combining two different feature types. To verify or disprove this hypothesis,
all combinations of two of the introduced features for NBC and SVM are evaluated and
the results are presented in this section.

3.5.1 Naive Bayes Classifier

Combination of features for NBC are implemented using a two stage smoothing ap-
proach with Laplace smoothing for features and Jelinek-Mercer smoothing to combine
classifiers (see also section 2.1.3).

The following equation generalizes the maximum likelihood estimation with Laplace
smoothing, using feature type F with features f :
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After this smoothing step has been applied, the Naive Bayes Classifier proceeds as
usual:

classify(t) = argmax

Ci

P
�

(t|C
i

) . (3.9)

To approximate the optimal smoothing parameter value ↵*, a procedure similar to
the one of the corpus size experiment (section 3.3) is used. For each combination of
features, the ↵ values are sampled from 0.1 to 0.9 in steps of 0.1. Zero and one do
not have to be considered because those would result in the usage of just one of the
classifiers. For each feature type, the minimum training size determined in section 3.3
is used as training data. The resulting classifiers are evaluated on the hand labeled
training set. Finally, the effect of ↵ is visualized in a graph. Figure 3.6 presents the
graph for the combination of unigram and bigram features. Unigrams alone achieved
78.5% accuracy, bigrams 79.4%. The maximum accuracy for the combination is 81.0%
using ↵ = 0.5. Hence, the result is an indication that combinations of features may yield
overall benefits. Accuracy decreases when the weight shifts towards one of the classifiers
while being at a plateau for ↵ = 0.5, 0.6, 0.7. However, just the improvement compared
to unigram features is significant, the improvement compared to bigram features is not.
Morever, just as expected, the difference to the general baseline also is not significant.
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Figure 3.6: NBC created from a combination of unigram and bigram features. Accuracy is
plotted against increasing values of the sampling parameter ↵.

This result is representative for combinations of features performing more or less on
par with each other. There is an absolute increase of accuracy which is not significant
compared to the baseline.
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Figure 3.7: NBC created from a combination of unigram and subgrams3 features. Accuracy
is plotted against increasing values of the sampling parameter ↵.

The behavior of the classifier when combining a good and a bad performing feature is
illustrated in figure 3.7. It combines unigrams (78.5%) and subgrams3 (65%). With



3.5 Combining Features 49

increasing ↵, which means that it assigns more weight to the subgrams, the performance
degrades. The best ↵ for this combination is 0.1, assigning the maximum possible weight
to the unigrams. Even though subgrams3 achieved the best values for positive recall and
negative precision (see table 3.9), this feature does not seem to yield any improvements
when used with two stage smoothing.

Table 3.11 sums up the results for all combinations investigated.

Features Combination ↵* Accuracy Prec+ Rec+ Prec- Rec-
Unigrams+Bigrams 0.5 81.0% 76.2% 77.3% 84.3% 83.5%
Unigrams+Trigrams 0.6 80.3% 74.8% 77.5% 84.2% 82.2%

Unigrams+Subgrams3 0.1 78.3% 70.1% 81.5% 85.8% 76.1%
Unigrams+Subgrams4 0.1 79.0% 71.0% 81.4% 85.9% 77.3%

Unigrams+Pos 0.2 78.9% 71.5% 79.8% 85.0% 78.2%
Bigrams+Trigrams 0.5 79.9% 74.9% 76.3% 83.5% 82.5%

Bigrams+Subgrams3 0.1 79.8% 73.1% 79.7% 85.2% 79.9%
Bigrams+Subgrams4 0.2 80.5% 73.4% 81.5% 86.3% 79.7%

Bigrams+Pos 0.4 80.0% 72.8% 81.3% 86.1% 79.1%
Subgrams3+Subgrams4 0.9 73.9% 62.5% 89.7% 89.9% 63.1%

Subgrams3+Pos 0.1 65.1% 54.2% 92.4% 89.9% 46.4%
Subgrams4+Pos 0.1 74.6% 63.2% 89.9% 90.3% 64.2%

Table 3.11: Results for the evaluation of feature combinations for NBC. The column ↵*
denotes the parameter for the smoothing which produced this best result. Bold faced accu-
racies denote significant differences to the baseline.

Only three combinations (subgram features with each other, and subgrams with POS
tags) resulted in significant differences from the baseline. Unfortunately, those differ-
ences are significantly worse. All other combinations performed on par with the baseline.
However, some of them resulted in an absolute increase of accuracy.

To sum up, the combination of features with Naive Bayes Classifiers using two stage
smoothing does not yield significant improvements over the baseline. Nevertheless, a
combination of unigrams and bigrams performs significantly better than unigrams only,
but it is statistically indistinguishable from bigrams only. For this reason, only bigrams
or a combination of unigrams and bigrams should be used. Other combinations do not
yield any improvements.

3.5.2 Support Vector Machine

To combine different kinds of features for SVMs, the respective feature vectors are
combined. The feature space is extended by appending the second feature vector to the
first one. For example, the unigram feature space has dimension n, the bigram feature
space is of dimension m. Then the bigram features would be appended to the unigram
features, resulting in a feature space of size n+m. Thus, when combining certain feature
spaces, like trigrams and bigrams, the dimension could easily get out of hand. Various
term weighting schemes could be applied additionally, see Joachims (2002) for details.
Due to the this work being focussed on the basic methods, no weighting schemes are
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used here. However, all combinations that could be computed have been evaluated. The
procedure is the same as for the NBC. SVMs are trained with the obtained training
size for the respective feature and evaluated on the hand labeled test set. Table 3.12
presents the results.

Features Combination Accuracy Prec+ Rec+ Prec- Rec-
Unigrams+Bigrams 82.6% 74.8% 86.2% 89.4% 80.1%
Unigrams+Trigrams 82.3% 75.0% 84.6% 88.4% 80.6%

Unigrams+Subgrams3 79.5% 72.6% 79.9% 85.2% 79.3%
Unigrams+Subgrams4 79.5% 74.0% 76.4% 83.4% 81.6%

Subgrams3+POS 77.7% 72.3% 73.4% 81.6% 80.7%
Subgrams4+POS 77.8% 72.6% 73.0% 81.4% 81.1%
Unigrams+POS 79.8% 74.0% 77.4% 84.0% 81.4%
Bigrams+POS 78.9% 72.5% 77.3% 83.7% 80.0%

Bigrams+Subgrams3 77.7% 72.4% 73.1% 81.4% 80.9%
Bigrams+Subgrams4 78.6% 74.2% 72.9% 81.6% 82.6%
Trigrams+Subgrams3 74.6% 68.4% 69.9% 79.1% 77.9%
Trigrams+Subgrams4 75.8% 70.8% 69.0% 79.1% 80.5%

Trigrams+POS 75.7% 69.4% 72.2% 80.4% 78.2%

Table 3.12: Results for the evaluation of feature combinations for SVM. Bold faced accuracies
denote significant differences to the baseline.

Bold faced accuracies indicate significant differences in comparison to the established
baseline. Unigrams, combined with rather bigrams or trigrams yield significant im-
provements up to 82.6% while they are statistically indistinguishable from each other.
However, the feature space and hence also the computation time is reasonably smaller
for unigrams+bigrams. Thus one should favor this feature combination over uni-
grams+trigrams. Combinations of trigrams with subgrams or POS tags yield signif-
icantly worse results than the baseline. The rest of combinations performs neither
significantly worse nor significantly better.

To summarize, combining features for SVMs does not only yield an absolute increase
in accuracy but also significantly improves it compared to the baseline.

3.6 Conclusions

As as result of the performance investigation one can draw various interesting conclu-
sions. Firstly, an analysis of how well features discriminate between classes can not
necessarily be transferred to the performance of a classifier using those features. For
example, POS tags seemed to discriminate the classes fairly well, according to the X 2

analysis in section 3.1.4. However, classifiers using POS tag features did not perform
very well.

Secondly, the commonly used preprocessing techniques like entity removal/replacement,
spelling correction, acronym expansion, stemming, lemmatization and stop word re-
moval did not result in any significant improvements. Nevertheless, they also did not
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make the accuracy significantly smaller while still reducing the size of the feature space.
Therefore, they may still be useful when high dimensions are becoming a problem for
reasons of limitations in memory or computation time.

Finally, most of the proposed combinations of features also do not yield any significant
improvements over the established baseline. Only combining unigrams and bigrams/tri-
grams to a feature space for SVMs yielded a significant improvement and achieved up
to 82.6% accuracy. As far as I am concerned, the only current method significantly
outperforming this is the one of Bakliwal et al. (2012) which achieved 88% accuracy on
the testsets from Go et al. (2009) and Bora (2012). They have been using handcrafted
sentiment feature vectors for SVMs, which have not been considered for this thesis
because they have not been made public entirely. However, as they did not make any
statements of the quality of the test dataset their results have to be interpreted with
caution. Therefore, only a direct comparison on the same dataset can reveal if the
difference is actually significant.

The major takeaway of this evaluation is the following: Many of the proposed methods
do not yield any significant improvements over the canonical baseline while others,
which have been discarded by many researches, do so. Support Vector Machines using
a combination of unigrams and bigrams are the best performing standard classifier
according to the investigation performed in this thesis.





4 Implementation of a Real Time Sentiment Tracking

Application

In this chapter an implementation of a real time sentiment tracking application is pre-
sented. As the main focus of this work is the performance investigation in chapter
3, only a proof-of-concept application is provided. This application should be seen as
a basic suggestion on how one should apply the obtained classifier to create a useful
prototype and not as a full-fledged product that could be published right away.

After introducing the basic requirements, an overview of the architecture and the tools
used is given. The next sections describe in-depth how exactly the specified features
are implemented with the tools introduced. Finally, some conclusions regarding the
development process and the tools used are drawn.

4.1 Requirements

First of all, the application should be web based. A web based application is accessible
by any operating system which can run an arbitrary browser. Moreover, the complex
and time consuming computations are performed on the server side. As a user, one
just has to visit a web site to make use of the service. However, for the purpose
of this thesis the application is implemented as single user application without user
management. Thus, access control has to be taken care of separately. This can be done
by making a simple HTTP authentication mandatory or by restricting the access to the
application to particular networks.

Next, one should be able to define somehow which tweets’ sentiment one would like
to track on twitter. For this purpose a so called entity has to be defined by giving
a list of relevant keywords. For example, when one would like to track the sentiment
towards the company Apple, those keyword list could be something like apple, ipad,
iphone, mac, imac, osx. Tweets containing one of the keywords are then assigned to
the defining entity. This entities should be manageable through the web interface.

The processing and collection of the tweets should happen in the background automat-
ically. Once the entities have been defined, the collection process should listen to the
Twitter Streaming API1 with regard to the relevant keywords. This process should also
be scalable to some extent. Depending on the keywords given, there could be hundreds
of thousands of tweets per minute which have to be handled by the application.

After after having collected relevant tweets for the defined entities, one is interested
in visualizing their sentiment. The sentiment should be presented as a time series,
indicating the ratio of positive and negative tweets over time. The time frame and the

1https://dev.twitter.com/docs/streaming-apis

https://dev.twitter.com/docs/streaming-apis
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resolution for the graph should be chosen by the user. If, for example, a company does
a live event where they present new products, they may be interested in the sentiment
at the exact time the product is mentioned in their presentation. Hence, they have to
be able to choose a very high resolution like ten seconds. However, when they want
to get informed about the sentiment towards the product five weeks after the launch,
a proper resolution for this would be days or even weeks. Thus, the tweets’ sentiment
has to be aggregated over given time frames and resolutions dynamically.

Now that users can browse the sentiment towards their entities, they most likely want to
explore the collected tweets to get an idea what caused the presented sentiment results.
If, for example, the sentiment towards an entity on a particular day was bad, one would
like to be able to see the tweets from that day. After browsing those one may get an
idea which keywords are relevant for that day’s sentiment. As the user does not want
to browse all the tweets, he wants to be able to filter the presented tweets by providing
a search query. Moreover, it would be nice if the sentiment graph now also adapted to
the search and displayed the sentiment of the filtered tweets.

Finally, the sentiment of the various entities should be comparable in some kind of
dashboard. For example, when tracking an election, one would like to see the sentiments
towards multiple political parties in comparison, not each one separately. However, it
is also crucial that entities can be hidden when there are too many of them.

Summarizing the requirements, a web application is desirable in which entities can be
defined by a keyword list. Tweets relevant for those keywords should be obtained and
analyzed. The results should be presentable with regard to a given time frame and
resolution. Tweets should also be browsable, and should be filterable using a full-text
query. The sentiment graph should dynamically adapt to the filtering and present the
sentiment for filtered tweets. Finally, the sentiment graphs of all entities should be
visualized in conjunction at a dashboard page.

4.2 Overview of the Architecture and the Tools Used

This section presents an overview of the various components used to implement the
features specified in the preceding section 4.1. Additionally, it provides information on
how those components work together. Figure 4.1 illustrates all components and their
connections.

The basis of the application is formed by a Ruby on Rails2 (Rails) application. Rails is
a framework written in the Ruby programming language3. David Heinemeier Hansson,
author of Rails, felt the need to develop a framework which makes the creation of web
applications as easy as possible. He achieved this by applying various design patterns
like Model-View-Controller (MVC), Convention over Configuration (CoC) or
Don’t Repeat Yourself (DRY)4 and exploiting the dynamic nature of Ruby. As a
result, working with Rails is really comfortable and productive. Due to its ability to

2http://rubyonrails.org
3https://www.ruby-lang.org/
4For further details see Haldenwang (2011).

http://rubyonrails.org
https://www.ruby-lang.org/
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Rails Application

Resque QueueTweet Harvester
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MySQL-DB
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Resque Worker

Figure 4.1: Overview of the applications components and their interactions.

enable developers to create stable working prototypes in relatively short time, it has
become the status quo in the German web startup scene.

Within the architecture, the Rails application responsibilities are to provide an inter-
face to manage entities, store them in a MySQL database5 and retrieve them when
needed. Moreover, it handles the storage of harvested tweets and keywords, also using
the MySQL database. It also includes the presentation layer which brings the gathered
data to the user. Tweets can be browsed in dynamic HTML tables created with the
Datatables library6. The overall layout is designed using Twitter Bootstrap7. To
visualize the sentiment graphs, the chart framework Highcharts8 is made use of. De-
tails are described in later sections. Figure 4.2 presents the underlying data model of
the Rails application.

Tweet Keyword

text

original_id

created_at name

n m
belongs to belongs to Entity

name

n m

sentiment

Figure 4.2: Datamodel of the Rails application in ER notation. Primary keys are artificial id
attributes, which are not shown here. Some semi-relevant tweet meta data attributes like
retweet_count are also left out.

5http://www.mysql.com
6https://datatables.net
7http://getbootstrap.com
8http://www.highcharts.com

http://www.mysql.com
https://datatables.net
http://getbootstrap.com
http://www.highcharts.com
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Acquisition of tweets from the Twitter Streaming API is done by a component called
tweet harvester. This process queries the MySQL database to obtain the list of rele-
vant keywords. After that, it starts listening to the tweet stream for tweets containing
those keywords. Since the developer documentation from twitters Streaming API sug-
gests that the process obtaining the tweets should not be the process analyzing them,
this is done by a separate component. Doing the processing within the harvester would
result in it not to be able to fetch all tweets which are send through the stream, which
would end in twitter terminating it. Therefore, the harvester pushes the obtained tweets
into a queue for further processing. To realize such a queue, the Ruby library Resque9

is used. Resque uses a very performant in-memory Redis10 database to store queued
data. Redis has a native data type for atomic queues which makes this fairly easy,
even if multiple processes work with it in parallel. More details are to be shown in the
following sections.

Now that the tweets have been obtained and are waiting in the queue for processing, a
Resque worker process can poll them to do this. It transforms the raw data received
from twitter to the data format expected by the rails application and inserts it into the
MySQL database. Along with this, the tweet also is indexed using Elastic Search11.
Elastic Search is a full-text search engine which is used to realize the filtering feature.

Since the basic components and their interconnections are known now, the following
sections highlight the implementation of each feature in greater detail, showing how
exactly the components work.

4.3 Entity Management

A simple interface has been implemented for the creation of entities. A screen shot is
shown in figure 4.3. This could be done by using basic Rails features only. The user
enters the name of the entity, a comma separated list of keywords and then just presses
the Create Entity button to start tracking the sentiment.

Figure 4.3: Screenshot of the interface to create a new entity.

9https://github.com/resque/resque
10http://redis.io
11http://www.elasticsearch.org

https://github.com/resque/resque
http://redis.io
http://www.elasticsearch.org
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Looking at the underlying data model, presented in figure 4.2, one notices that keywords
are their own entity and not simply an attribute of the model Entity. Hence, the
application has to make sure that the many-to-many relation is handled accordingly and
that necessary instances of Keyword are created with the respective name. The complex
part here is not to create the entity, but to edit and update the list of keywords correctly.
This problem, one comes across once in a while, can be approached by treating the old
and the new keywords as sets. Let A be the new set of new keywords and B be the set
of keywords present before the update. The simplest action has to be performed for the
set A \ B. Those are keywords that have been in the old list and still are in the new
list. Therefore, nothing has to be done for them. If A\B is the set of keywords that
has to be added, it has to be checked if an instance of Keyword with the given name
exists. If there already is one, only the relation has to be added, if there is not, it has
to be created first. The set B\A includes the keywords which have been there before
but should be removed now since they are no longer in the list. Listing 3 presents the
resulting Ruby code from the model class Entity.

1 class Entity < ActiveRecord::Base
2 has_and_belongs_to_many :keywords
3

4 def keyword_list
5 keywords.map(&:name).join(", ")
6 end
7

8 def keyword_list=(list)
9 transaction do

10 new_keyword_list = list.to_s.split(",").map(&:strip).
11 map(&:downcase)
12 old_keyword_list = keywords.map(&:name) || []
13

14 to_add = new_keyword_list - old_keyword_list # A \ B

15 to_add.each do |keyword|
16 keywords << Keyword.where(name: keyword).first_or_create
17 end
18

19 to_remove = old_keyword_list - new_keyword_list # B \ A

20 to_remove.each do |keyword|
21 keywords.delete Keyword.where(name: keyword).first
22 end
23 # nothing to do for the intersection of A and B

24 end
25 end
26 end

Listing 3: Code from the entity model, illustrating the handling of keyword lists.

In order to prevent undesired anomalies from occurring, the whole procedure is wrapped
into a transaction. All other necessary steps are handled by the rails application au-
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tomatically. The field from the HTML form is named keyword_list internally. Hence,
Rails uses the method keyword_list to populate the field with data when updating
the entity and it uses the method keyword_list=(list) to process the value sent from
the form. By overwriting those two methods with the desired behavior, the handling of
the keyword list is easily implemented.

4.4 Harvesting and Processing Tweets

Tweets are collected using Twitter’s public streaming API12. They are providing a
freely available but limited stream, yielding a random portion of all tweets currently
tweeted. Only one connection can be made per user account. How many tweets one
gets is mostly limited by how fast one can read from the stream. It rarely happens that
no more tweets can be obtained due to the limitation. Since one is only interested in
getting tweets including relevant keywords for the created entities, the filtered stream13

is used. It can be filtered by keywords, authors or locations. For this application only
the keyword filter is harnessed. Figure 4.4 illustrates the tweet processing pipeline used
in this application.

Tweet 
Harvester

Resque 
Queue

Resque 
Worker

Resque 
Worker

Resque 
Worker

MySQL-DB

Elastic
Search

Figure 4.4: Data flow of the tweet processing pipeline.

Through Twitter’s streaming API, the tweet harvester obtains the relevant tweets. This
is done with the Ruby gem Tweetstream14. The relevant information is pulled out,
encoded as JSON and handed over to the Resque queue where it is stored until a worker
polls it, processes the data and inserts it into the MySQL-DB and the Elastic Search
full-text search engine. Listing 4 illustrates the core of the tweet harvester process.
12https://dev.twitter.com/docs/streaming-apis/streams/public
13https://dev.twitter.com/docs/api/1.1/post/statuses/filter
14https://github.com/tweetstream/tweetstream

https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/api/1.1/post/statuses/filter
https://github.com/tweetstream/tweetstream
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1 daemon = TweetStream::Daemon.new(’tracker’)
2

3 buffer = []
4 buffer_size = 20
5

6 keywords = Keyword.active_keywords.join(",")
7

8 daemon.track(keywords) do |tweet|
9 data = {}

10

11 data[:created_at] = tweet.created_at
12 data[:text] = tweet.full_text
13 data[:original_id] = tweet.id
14 data[:language] = tweet.text.language
15

16 buffer << data
17

18 if buffer.size >= buffer_size
19 Resque.enqueue(TweetProcessingJob, buffer.to_json)
20 buffer.clear
21 end
22

23 end

Listing 4: Core of the tweet harvester process. Irrelevant configuration is left out here.

One very nice feature of Tweetstreamer is that it comes with daemon mode included.
This makes it particularly easy to start the tweet harvester in the background, restart
it if necessary or check if it is running. The class TweetStream::Daemon makes this
possible, it is instantiated in line one. The run management can be done via comman-
dline:

tweet_harvester {start, stop, restart, run, status}.

At first, the daemon object is created with the name tracker. Next, a buffer of size
20 is initialized. The buffering is necessary so that not every single tweet is put into
the queue separately, but rather a package of multiple tweets. This buffering procedure
minimizes the IO overhead occurring while communicating with the queue. Queueing
just one tweet at a time is just not beneficial, because the IO overhead of putting it
into the queue and polling it back out is bigger than the actual processing time.

After obtaining the keywords from the database using the Keyword model class of the
Rails application, the tracking process can be started. To do this, one has to call the
method track on the daemon object, handing it the list of keywords as a parameter
along with a code block that is used to process the tweet. The given code block is called
for each tweet which is received from the stream. It pulls out the relevant data first,
then adds it to the buffer. Finally, it is checked whether the buffer is full, and if so,
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its content is JSON encoded and handed over to the Resque queue, adressed at the job
class TweetProcessingJob, while also clearing the buffer. No further processing is done
here. Twitter suggests not to do any processing in the harvesting process, since that
would slow down the rate at which the tweets are received and may result in Twitter
closing the connection due to being too slow.

Processing of the tweets is done in Resque worker processes. To handle large traffic, an
arbitrarily large number of workers can be started in parallel. They do not even have
to be at the same machine. All they need is access to the Redis server containing the
queue data. The whole process of polling data from the queue is handled by Resque.
One just has to implement a class handling the given data in a class method called
perform.

The method perform receives the JSON encoded buffer put into the queue by the
harvester. First of all, the data is decoded, then, for each tweet of the package, its
data is saved to the database using the applications model Tweet by handing over the
decoded data to its constructor. Due to its simplicity, the code is not shown here. The
actual processing is done with callbacks in the model class, as presented in listing 5.

1 class Tweet < ActiveRecord::Base
2 after_create :connect_with_relevant_keywords!
3 before_save :set_sentiment!, on: :create
4

5 private
6 def connect_with_relevant_keywords!
7 words = text.downcase.words
8

9 Keyword.all.each do |keyword|
10 if words.include?(keyword.name)
11 keywords << keyword
12 end
13 end
14 end
15

16 def set_sentiment!
17 sentiment = SentimentClassifier.classify(text)
18 end
19 end

Listing 5: Callbacks of the tweet used to assign a sentiment and connect it to the relevant
keywords.

Callbacks are part of the ActiveRecord object life cycle. They allow the developer to
inject certain actions into specific places in the life cycle. Before a tweet is saved,
but only on its creation, the sentiment classification has to take part. Hence, in
line four a before_save callback is issued, telling the model class to call the method
set_sentiment! before saving. This method harnesses an implementation of the sen-
timent classifier obtained in the preceding chapter 3 to set the sentiment for the tweet.



4.5 Browsing an Entity’s Tweets with Full-Text Search 61

To create a connection between the tweet and the keywords it is relevant for, it has to
be saved first, so that its primary key is generated and can be used as a foreign key for
the connection. Hence, the method connect_with_relevant_keywords! is invoked as
an after_create callback. It compares the tweet’s text with all keywords stored in the
database and creates a connection when there is a match. A very similar mechanism is
used to add the tweet to the index of Elastic Search. This is explained in more detail
in section 4.5 about the full-text search engine.

4.5 Browsing an Entity’s Tweets with Full-Text Search

In this section it is explained how one could easily make tweets filterable using full-text
search. At first, the client side is discussed, next, it is explained how tweets are indexed,
and finally, an illustration is given on how those two components are connected.

4.5.1 Presenting Tweets with Datatables

Figure 4.5: Screen shot of the provided interface to browse an entity’s tweets.

Starting with the client side, figure 4.5 presents a screen shot of an entity’s tweet
browsing interface. The entity currently looked at is the company Apple. The keywords
are also shown next to the table, but they have been left out here for reasons of space.
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Per default, the table shows all available tweets, using pagination. Pagination denotes
a method to only show a given number of tweets per page and provide links to the
other pages. The page buttons are located at the bottom of the table and are also not
included in the screen shot due to limitations of space. However, the number of tweets
per page can be selected right at the top.

As a first kind of filtering, the user can provide a time frame through the input fields
labeled From and To. When clicking one of the input fields, a comfortable graphical
interface to pick a date and time pops out, which has been created with the jQuery
UI15 add on Timepicker16. Within the screen shot the timepicker for To is popped
out.

Finally, the user can provide an arbitrary search query using the input field labeled
Search to filter tweets he is interested in. The search makes use of the tweet’s author’s
name, its text and even its sentiment. If somebody wants to filter all tweets of the
author Cindy, including the word Smurf and with positive sentiment, the query Cindy
Smurf positive returns exactly those.

The attentive reader might have noticed the lack of a submit button. Using the library
Datatables17, integrated with the Ruby gem jquery-datatables-rails18, this is not
necessary. Datatables can be told to reload itself when needed. Such an integration of
datatables on the client side is also fairly easy. First of all, one has to create a HTML
table including only the table header. In the next step, some javascript is attached to
make it a datatable. Listing 6 shows the most relevant code for this.

1 var oTable = $(’.dataTable’).dataTable({
2 "sDom": "<’row’<’span9’l><’toolbar span5’>" +
3 "<’span4’f>r>t<’row’<’span4’i><’span5’p>>",
4 "sPaginationType": "bootstrap",
5 "bServerSide": true,
6 "sAjaxSource": $(’#tweets’).data(’source’),
7 "fnServerParams": function ( aoData ) {
8 aoData.push( { "name": "entity_id",
9 "value": $(’#tweets’).data(’entity_id’) } );

10 aoData.push( { "name": "from_datetime",
11 "value": datetimeFrom } );
12 aoData.push( { "name": "to_datetime",
13 "value": datetimeTo } );
14 }
15 });

Listing 6: Relevant code for the Datatables integration.

15http://jqueryui.com
16http://trentrichardson.com/examples/timepicker/
17https://datatables.net
18git://github.com/rweng/jquery-datatables-rails.git

http://jqueryui.com
http://trentrichardson.com/examples/timepicker/
https://datatables.net
git://github.com/rweng/jquery-datatables-rails.git
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Datatables is integrated by selecting the DOM19 object where the table should be
rendered to. The table object has been assigned the CSS class dataTable to do
this. Next, the method dataTable() is called on it with the desired configuration
parameters. The parameters sDom and sPaginationType contain configuration for the
table’s appearance. With bServerSide, the table is told not to do any processing by
itself, and just to send queries to the server. Using sAjaxSource one could specify the
URL to which the query is sent. Here, this is read right from an HTML5 data attribute
of the table itself. Finally, one has to add the parameters to the query sent to the
server, which are not handled per default. The query term and the pagination are native
components of Datatables and hence have not be treated separately. However, the time
frame and the id of the entity the user is currently looking at are not. The entity’s id
can also be retrieved from the table’s data attributes. The time frame is acquired from
the variables datetimeFrom and datetimeTo. Those are set by Timepicker when the
user changes one of the time frame fields. Moreover, Timepicker also notifies Datatables
of changes so it can reload, using a callback. Since the query term and the pagination
values are native components of Datatables, the table reloads automatically once their
values change.

4.5.2 Indexing and Retrieving Tweets with Elastic Search

Full-text searching with MySQL is not very efficient in general, especially when using
InnoDB20 as storage engine, as Rails does per default. Therefore, a tool developed es-
pecially to perform efficient full-text searching is used: Elastic Search21. On its website,
it is described as a “flexible and powerful open source, distributed real-time search and
analytics engine for the cloud”. It has been applied successfully by large web companies
like Stack Overflow22, StumbleUpon23 or SoundCloud24. Respective case studies
are provided at the Elastic Search website25. Moreover, popular Rails cloud hosting
providers like Heroku26 offer built-in packages for Elastic Search. Hence, it seems to
be a widely accepted tool to perform efficient full-text search, and thus is used in this
work.

Elastic Search is built upon Apache Lucene27 and provides a variety of features.
The system can easily be configured to run on a cluster of multiple machines and it
automatically handles distribution and failure management. This makes the system
overall performing well, allowing real time computations and analysis. Moreover, it is
document-oriented, which means that no strict scheme for the data has to be given.
Everything is stored as JSON objects. Furthermore, the interactions are performed
with a comfortable REST interface, also using JSON as communication language.
19http://www.w3.org/DOM/
20http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
21http://www.elasticsearch.org
22http://stackoverflow.com
23http://www.stumbleupon.com
24https://soundcloud.com
25http://www.elasticsearch.org/case-studies/
26http://www.heroku.com
27http://lucene.apache.org/core/

http://www.w3.org/DOM/
http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
http://www.elasticsearch.org
http://stackoverflow.com
http://www.stumbleupon.com
https://soundcloud.com
http://www.elasticsearch.org/case-studies/
http://www.heroku.com
http://lucene.apache.org/core/
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However, for this work the REST API is not used directly. Fortunately, there is a
Ruby gem called Tire28 which integrates the Rails model classes with Elastic Search.
One benefit of this integration is that as a developer one does not have to take care of
any REST communication, query building or index management. Listing 7 presents a
simplified version of the configuration for the model class Tweet.

1 class Tweet < ActiveRecord::Base
2

3 include Tire::Model::Search
4 include Tire::Model::Callbacks
5

6 mapping do
7 indexes :text
8 indexes :entities_ids, as: ’entities_ids’
9 indexes :created_at, type: ’date’

10 indexes :sentiment
11 end
12

13 def entities_ids
14 entities.map(&:id)
15 end
16 end

Listing 7: Relevant excerpt of the tire indexing code. Configuration to handle multiple
languages with special analyzers is left out.

First of all, some model specific modules are included in lines three and four. Those
enhance the class Tweet with various functionalities needed to interact with Elastic
Search. For example, the module Tire::Model::Callbacks extends the class with
after_save callbacks similar to those presented in section 4.4, which automatically
handle the indexing when an instance of Tweet is created. Thus, the indexing actually
takes place in the Resque worker, where the Tweet instances are created.

Moreover, the class method mapping is provided, which accepts a block argument con-
taining the indexing configuration. The statement indexes :text results in the model
attribute text being indexed in a field of the same name. For more complex data that is
not a direct model attribute, one can provide the name of a method as second argument
to the method indexes. The return value of the method is indexed. Line eight includes
such a use case. To be able to only retrieve tweets which are connected to a certain
entity, one needs to index their ids. Since the entities’ ids are no attributes of Tweet,
Tire is told to use the method entities_ids to retrieve them. The method, defined
in line 13, simply constructs an array including each relevant entity’s id. Whenever
the tweet is updated, the method is called again to retain consistency. Furthermore, a
data type can be defined if necessary. For example, one would like to index the tweet’s
creation timestamp as date and not as string. This is configured in line nine.

28https://github.com/karmi/tire

https://github.com/karmi/tire
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Without having to deal with any REST or JSON, the index is automatically created
and updated at correct times preserving consistency between the MySQL database and
Elastic Search. For more information on the multitude of features, the interested reader
is invited to take a closer look at the Tire gem documentation29.

Querying the index is not very complicated either. Listing 8 presents a simplified version
of the query used to browse tweets. The real query is embedded into a class method on
Tweet, and also handles missing or wrong parameters by only applying filters actually
given. To keep the example simple, those steps are left out here.

1 Tweet.search do
2 query do
3 boolean do
4 must { string query_string , default_operator: "AND" }
5 must { term :sentiment , sentiment }
6 must { range :created_at , from: start_date,
7 to: end_date }
8 must { terms :entities_ids , entities_ids }
9 end

10 end
11 end

Listing 8: Illustration of the query API of Tire.

A search is performed by calling the method search on the model class. This method
has been made available by inclusion of the Tire modules. As a parameter it expects a
block which consists of the code constructing the actual query. If one wants to receive
only those tweets which fulfill all criteria, one has to wrap the filters into a boolean
block and each criterion into a must block. As a result, they are concatenated with a
logical and. The first filter in line four is of the kind string. It is passed the query
string the user entered into the search field. If the query term consists of multiple words,
they should also be concatenated with a logical and. Next, a filter of the type term is
applied to the sentiment. Term fields are not analyzed in any manner, they just match
for identity. To only retrieve tweets from the desired time frame, one can use a range
filter, passing it the name of the date field and the start and end date of the time frame.
Finally, to scope the search with regard to the entity one is currently interested in, a
terms filter is used. It works just like term but handles lists of multiple terms since a
tweet can be relevant for multiple entities.

1 results = Tweet.search { "left out" }
2 first_result = results.first
3 tweet_text = first_result.text
4 tweet_datetime = first_result.created_at

Listing 9: Example code on how to access the results of a tire search.

29http://karmi.github.io/tire/

http://karmi.github.io/tire/


66 4 Implementation of a Real Time Sentiment Tracking Application

The results can easily be accessed using accessor methods which are named like the
indexed attributes. Listing 9 provides an example.

4.5.3 Connecting Datatables and Elastic Search Using the Presenter
Pattern

The default for handling HTTP requests in Rails is to map every URL to a particular
controller action. Within the controller action, the requested data is acquired from the
database using model classes, and it is then returned to the client in the desired format.
However, in some cases relatively complex transformations of the data are necessary.
Providing data for Datatables is such a case. Request parameters have a special format
that has to be handled explicitly. Additionally, Datatables expects a certain response
format to be able to process the data correctly. While all necessary transformations
could be done in the controller action, this is strongly discouraged. A controller action
should basically just delegate the calls to gather the data somewhere else and respect
the single responsibility paradigm. Hence, a controller should just control the data flow
and do no direct data processing. The actual code from the application is presented in
listing 10. As suggested, the action index does nothing other than handling the different
response formats while delegating the request’s processing and response generation to
an instance of TweetsDatatable.

1 class TweetsController < ApplicationController
2 def index
3 respond_to do |format|
4 format.html
5 format.json do
6 render json: TweetsDatatable.new(view_context)
7 end
8 end
9 end

10 end

Listing 10: Illustration of the controller code which processes the Datatables request.

Since the code to generate the required format is basically presentation logic, it does
not fit into the model class. Thus, it is extracted to a new presenter class. As there is
no view for creating the JSON data expected by Datatables, the presenter pattern30

is made use of. The basic idea of the presenter pattern is to create intermediate ob-
jects between view and controller to retain clarity. As shown in line six, the presenter
class TweetsDatatable receives the controller’s current view_context to get access
to the request object, and to the available view helper methods. As a result, it gets
both the capabilities of a view and partly of the controller. The methods user_link,
sentiment_icon and format_date are not included due to lack of space. They just
30For a general introduction to presenters in Rails see: http://railscasts.com/episodes/

287-presenters-from-scratch, for a Datatables specific version see: http://railscasts.com/
episodes/340-datatables.

http://railscasts.com/episodes/287-presenters-from-scratch
http://railscasts.com/episodes/287-presenters-from-scratch
http://railscasts.com/episodes/340-datatables
http://railscasts.com/episodes/340-datatables
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construct the HTML code one would expect considering the method’s name. Moreover,
parameter sanitization, such as preventing cross site scripting attacks or SQL injections,
is also left out but it is performed in the application of course.

1 class TweetsDatatable
2 delegate :params, :h, :link_to, # [...]

3 to: :@view
4

5 def initialize(view)
6 @view = view
7 end
8

9 def as_json(options = {})
10 {
11 sEcho: params[:sEcho].to_i,
12 iTotalRecords: tweets.total,
13 iTotalDisplayRecords: tweets.total,
14 aaData: data
15 }
16 end
17

18 private
19 def data
20 tweets.map do |tweet|
21 [
22 user_link(tweet.user_name, tweet.user_id),
23 tweet.text,
24 sentiment_icon(tweet.sentiment),
25 format_date(tweet.created_at)
26 ]
27 end
28 end
29

30 def tweets
31 @tweets ||= Tweet.search_tweets(
32 query_string: params[:sSearch],
33 page: params[:iDisplayStart],
34 per_page: params[:iDisplayLength],
35 entity_id: params[:entity_id],
36 start_date: params[:from_datetime],
37 end_date: params[:to_datetime]
38 )
39 end
40 end

Listing 11: Simplified excerpt of the Datatables presenter class TweetsDatatable. Some
methods used are left out due to lack of space.
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A simplified excerpt of the presenter class TweetsDatatable is shown in listing 11.

First of all, the class has to store the controller’s view context in an instance variable
called @view. Lines two and three set up the delegation to the view context. As a
result, if a method is not known to TweetsDatatable but can be delegated to the view
context, it will be invoked there instead. For reasons of space, some delegated methods
are left out.

The method as_json is called by the controller when trying to render the object in the
JSON format. Hence, it has to return the desired JSON representation for Datatables.
It has to include an only internally used field named sEcho, the number of records to
be displayed and the actual data to fill the table with.

Generating the data is done with the private method data. This method creates a
two dimensional array, the first dimension representing the tables rows, the second the
columns. Note that the order for the second dimension matters, the order of data has
to match the order of the columns in the table.

The tweets matching the search query are provided by the method tweets. To load the
tweets, a query building method search_tweets (see section 4.5.2) is called, passing it
the relevant parameters which have been sent by Datatables. Moreover, this method
makes use of the lazy loading pattern, using the operator ||=. If the instance variable
@tweets exists, nothing will happen and it will just be returned. If it does not exist,
the query will be sent, the result will be assigned to @tweets and finally the tweets are
returned. Lazy loading prevents unnecessary loading and reloading of data by ensuring
it is just loaded when it is really needed and cached afterwards for further usage.

While the example presented consists of just 40 lines of code, the real TweetsDatatable
class includes about 80 lines of code. Having this code cluttering the controller in a
non object oriented manner would make it hard to understand and maintain in the long
run. That is why the usage of presenters is the design pattern of choice for use cases
similar to the one illustrated here.

4.6 Visualizing the Entities’ Sentiment

In this section, the process of visualizing the sentiment towards an entity is presented.
To start with, the client side user interface is presented and it is shortly illustrated how
it has been integrated into the application. Afterwards, the server side computation of
the time series data is explained. Since the communication between the components
works similarly to the one described in section 4.5.3, it is not discussed in detail again
here.

4.6.1 Drawing Charts with Highcharts

The visualization of the sentiment towards an entity is done using the pure HTML5
and Javascript library Highcharts31. Various kinds of charts are supported, such as
31http://www.highcharts.com

http://www.highcharts.com
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splines, bar charts, pie charts, time series charts, box plots and many more. Customers
of Highcharts include IBM, NASA, Siemens, HP, CBS, BBC and various other well
known companies. The toolkit can be used without fee for non commercial applications
but one has to purchase a license to use it for commercial purposes. Being based on
HTML5/Javascript only is a huge benefit since no further plugins are needed and most
current browsers can run Highcharts out of the box.

Figure 4.6 shows the sentiment chart for an entity. Right on top of the chart the
grouping interval can be chosen. Grouping tweets in ten minute intervals, as it is the
case in the figure, results in the sentiment being aggregated for all ten minute blocks
in the total time frame. Put simply, each data point represents the sentiment of a
ten minute interval of time. Whenever the user selects another resolution, the chart
automatically reloads the data from the server right away. By hovering a data point,
the user is presented a small layover including the exact starting time of the data points
time interval and the exact polarity score. The chart is located right below the datatable
introduced in the preceding section 4.5. Moreover, it also updates itself automatically
whenever the datatable is updated due to filters applied by the user.

Figure 4.6: Sentiment towards an entity, visualized with Highcharts.
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being the number of positive tweets in the interval and t�
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being the number
of negative tweets in the interval. The polarity measure’s sign intuitively reflects the
overall sentiment. Positive polarity means positive sentiment, negative polarity means
negative sentiment. Due to the normalization to the interval [�1, 1], the chart retains
its readability compared to visualizing the pure number of tweets. The number may
differ strongly for various time intervals, which would drastically increase the scale of
the charts and hence make the intervals with lower numbers of tweets unreadable.
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A very similar chart is used for the dashboard view, where multiple entities’ sentiments
can be compared. Figure 4.7 presents a screen shot. The visualized polarity score is
the same, along with the interface to choose the grouping interval. However, this chart
needs its own input element for the time frame to be visualized, since this view does not
contain a datatable from which those data can be read. Again, the date picker described
in section 4.5.1 and shown in figure 4.5 is used. Moreover, it visualizes multiple entities
at once. Below the chart, a legend illustrates which spline belongs to which entity. Note
that entities can be faded out by clicking the legend. In the screen shot, for example, the
entity Apple is faded out. Another click would fade it back in. Additionally, the layover
now includes the polarity scores for all visualized entities, labeled with the entities’
names.

Figure 4.7: Chart to compare the sentiment of various entities.

Integrating Highcharts into the Rails Asset Pipeline32 can be achieved easily with the
Ruby gem Highcharts Rails33. The actual drawing of the chart is done in Javascript
by telling Highcharts to create a chart using the specified options. The aforementioned
options basically control the appearance of the chart, like labels for the axes, the type
of chart or the data source. Configuring is done by creating a JSON object including
the desired settings. Due to its length and as it provides no further insights, the
configuration is not presented here.

However, loading of the data varies a little from the default behavior. Listing 12 presents
the reload function. It uses the default API from jQuery34 to perform asynchronous
32http://guides.rubyonrails.org/asset_pipeline.html
33https://github.com/PerfectlyNormal/highcharts-rails
34http://api.jquery.com/jQuery.ajax/
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requests. Since a variety of parameters has to be sent and processed, the HTTP verb
POST is used. Additionally the URL has to be given. The request parameters are
very similar to those of Datatables. In order to scope the data for the entity currently
looked at, in line six the entity’s id is retrieved. The selection of the correct time frame
is again done by using the variables datetimeFrom and datetimeTo which are provided
by Timepicker. Next, the grouping interval is set using the variable interval which is
set by the interval selection element whenever the user selects a new value. Finally, the
query string has to be acquired from the Datatables search input field. After setting
the dataType to JSON, a callback function is defined. This function is called after the
request has been performed successfully. Within the callback function, the retrieved
data is added to the configuration object options. At last, the chart is created by
passing Highcharts the desired configuration including the data.

1 function reloadHighcharts(){
2 $.ajax({
3 type: "POST",
4 url: "/tweets/histogram.json",
5 data: {
6 entity_id: $(’#tweets’).data(’entity_id’),
7 from_datetime: datetimeFrom,
8 to_datetime: datetimeTo,
9 interval: interval,

10 query_string: $(’div.dataTables_filter input’).val()
11 },
12 dataType: ’json’,
13 success: function(data){
14 options.series = data;
15 chart = new Highcharts.Chart(options);
16 }
17 });
18 }

Listing 12: Function to load the data from the server and redraw the chart.

The complete reload code is wrapped by the method reloadHighcharts. This method
is called on various occasions. First of all, it is invoked once the page has loaded to
initially draw the chart. Additionally, the method is invoked whenever Datatables per-
forms a reload to keep both components in sync. They should always display the same
data. Finally, when the user changes the resolution of the grouping interval, another
reload is performed. This does not affect the synchronization with Datatables because
the data does not change. Just the aggregation across the time intervals changes.

Code for the dashboard chart is not presented here, as it looks very similar and would
not provide any further insights.
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4.6.2 Computing Time Series Data with Facet Searches

As a user can dynamically change the aggregation interval for the sentiment time series,
it has to be computed dynamically. Thus, the computation has to be very efficient to
keep the client side interface fluent. The canonical approach is to retrieve all relevant
tweets, iterate over them and group them according to the given aggregation interval.
However, there would be huge overhead here. Depending on the entity’s keywords, the
number of tweets may rise up to millions in short time. Therefore, retrieving all of them
produces a lot of overhead since one is not interested in the tweets themselves but just
in their count with respect to a given sentiment in a given interval of time. Fortunately,
Elastic Search has a feature called Facets35 available. While a full-text search engine in
general is designed to quickly return a small number of documents matching the given
query, facets also allow for online computation of aggregated data on the documents
matching the query. The facet functionality is illustrated with the example given in
the documentation of the Tire gem36. The example consists of an Article model class
which has two attributes, a list of tags and a title. Listing 13 presents the creation
and indexing of the data, using the Tire enhanced model class (not shown here).

1 Article.create(title: "One", tags: ["ruby"] )
2 Article.create(title: "Two", tags: ["ruby", "python"] )
3 Article.create(title: "Three", tags: ["java"] )
4 Article.create(title: "Four", tags: ["ruby", "php"] )

Listing 13: Creating the data for the facet example.

Now that there is some data to work with, the facet search can be performed. The code
is shown in listing 14. First of all, one has to set a query string for the full-text search.
Using the query title:T*, only articles with titles starting with a capital T will be
returned. No further restrictions are made.

1 s = Article.search do
2 query { query_string "title:T*" }
3

4 facet ’tags’ do
5 terms :tags
6 end
7 end

Listing 14: Code to perform a facet search.

Next, the facet is created using the method facet. To access the results later, one has
to assign a name to the facet by passing it in as a first parameter. In this example, the
facet’s name is tags. Within the block, which is passed to the facet method, one has
to specify the type of aggregation. In this example, the occurrence count of each tag
shall be returned. Hence, the aggregation method is terms.
35http://www.elasticsearch.org/guide/reference/api/search/facets/
36http://karmi.github.io/tire/

http://www.elasticsearch.org/guide/reference/api/search/facets/
http://karmi.github.io/tire/
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The result object contains both the articles and the facet data by default. Figure 15
illustrates how the data can be accessed using the Tire result object. At first, a line
is printed giving information on the number of articles matching the query and the
articles’ titles. Next, the facet result is presented in a tabular manner.

1 puts "Found #{s.results.count} articles:" +
2 " #{s.results.map(&:title).join(’, ’)}"
3

4 puts "Counts by tag:", "-"*25
5 s.results.facets[’tags’][’terms’].each do |f|
6 puts "#{f[’term’].ljust(10)} #{f[’count’]}"
7 end

Listing 15: Result processing of the facet search example.

The facet data is stored in a Hash within the result set, using the facet name as key (see
line five). Moreover, accessing the tags key also returns a Hash containing meta data
for the facet which is not relevant for the example. The actual data can be reached
with the key terms. This data is simply iterated over and printed. When running this
script, the resulting output is:

Found 2 articles: Three, Two

Counts by tag:
————————————–
ruby 1
python 1
java 1

Indeed, this is exactly what was expected. Only articles starting with a capital T are
returned. Moreover, just the tags belonging to articles which match the query are
counted.

For the sentiment tracking application it is not necessary to aggregate terms but to
group tweets according to given time intervals. Fortunately, Elastic Search has a feature
for this called date histogram37. Basically, a date histogram is just a facet able to
handle dates. Listing 16 illustrates how to use a date histogram facet with Tire.

Filtering parameters, as shown in listing 8, are left out here. To retrieve a date his-
togram, the usual facet method is used, passing it the desired name, here histogram.
Instead of calling terms, the method date is used now to initiate date interval group-
ing. Finally, one has to set the field containing the date and the grouping interval.
Retrieving the data is very similar to the code presented in listing 15. For this reason,
it is not shown again.
37http://www.elasticsearch.org/guide/reference/api/search/facets/

date-histogram-facet/

http://www.elasticsearch.org/guide/reference/api/search/facets/date-histogram-facet/
http://www.elasticsearch.org/guide/reference/api/search/facets/date-histogram-facet/
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1 Tweet.search do
2 # filtering left out here, see listing 8

3

4 facet ’histogram’ do
5 date field: ’created_at’, interval: interval
6 end
7 end

Listing 16: Illustration of the date histogram usage in Tire.

4.7 Conclusions

Collecting and processing tweets from the Twitter Streaming API works fairly well using
the Gems Tweetstream for the streaming and Resque for the asynchronous processing.
Browsing data in tabular form is realizable easily by using Datatables. Presenting a
sentiment time series can be done comfortably with Highcharts. Indexing, full-text
searching and time series computation can be efficiently implemented using Elastic
Search.

The application consists of 2,476 lines of code, the majority (1,660) being Javascript,
and has been developed in slightly less than a man-month. Most of the Javascript
code was necessary to connect and customize the client side components Datatables
and Highcharts with each other and the backend. While there is not much Ruby code
in relation to Javascript, it still took a while to figure out how to make the big variety
of libraries and components work together. First and foremost, the largest part of the
work was identifying the components which can be used to fulfill the requirements and
integrate these components into the application. Due to their well designed interfaces
not too much additional code was necessary.

In conclusion, developing a scalable real time sentiment tracking application can be
done with relatively small effort by using publicly available tools only, once these tools
have been identified and configured.
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First of all, the results of the thesis are summarized and their transferability to other
domains is discussed. Finally, an overall conclusion and an outlook with regard to
further work in the thesis’ direction is presented.

5.1 Summary and Transferability of Results

After motivating the general usefulness of Twitter Sentiment Analysis in chapter 1,
chapter 2 introduced the basics necessary to understand the rest of the thesis. The
standard machine learning based classifiers Naive Bayes and Support Vector Machine
have been introduced. Next, it was presented how text can be transformed to vectors
in various ways so that the classifiers can make use of them. Additionally, most of the
current methods were presented and discussed.

In chapter 3, a comparison of the introduced methods, features and preprocessing tech-
niques was performed. Due to the fact that most public data sets are suffering from
certain drawbacks, quality criteria for a dataset were defined. Furthermore, a data set
satisfying these quality criteria was created and analyzed. The analysis revealed that
some kinds of features seem to be very good discriminators for the sentiment classes
positive and negative, while others rarely occur in significantly different numbers in the
two classes. After discussing how exactly the performance is measured, an experiment
was conducted to determine the ideal size of the training corpus for each combination of
classifier and feature. Next, the effects of preprocessing were investigated. The results of
this investigation were fairly surprising. No preprocessing technique yielded significant
improvements of the accuracy. That result is very astonishing since in current literature
those techniques are applied with the claim that they would improve accuracy. How-
ever, they neither made the results worse while reducing the size of the feature space.
Thus, performing the introduced preprocessing steps is not mandatory but can be used
to reduce the memory consumption of the classifier. Finally, various combinations of
features have been investigated for both introduced classifiers. No preprocessing was
applied, and the corpus size, which was experimentally determined before, was used.
Surprisingly, a combination of unigram and bigram features in conjunction with the
Support Vector Machine performed best with an accuracy of 82.6%. Most authors of
current literature claim that Naive Bayes Classifiers consistently outperform Support
Vector Machines, which is obviously not true. It was also very surprising that while
POS tags seemed to be features which separate the classes very well, a classifier trained
with them performs significantly worse than the baseline. As a result, not all features
which look promising at first sight are actually valuable for classification.

While this result mainly is relevant for the domain of Twitter Sentiment Analysis, it can
be partly transferred to other domains. Other online communities may allow for longer
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texts to be posted, but most of the time they are not much longer than a tweet. Hence,
the classifier could probably also be applied to other online community messages.

The final chapter 4 presented an illustration on how a realtime sentiment tracking
application can be designed and implemented as a web application. The major tools
used for this were Ruby on Rails, Datatables, Highcharts and Elastic Search. Most of
the work consisted of connecting these components to work together as desired. As a
result, an application was created that is able to track the sentiment on the Twitter
stream towards various entities, which are defined by a set of relevant keywords. The
sentiment is presented as an intuitive chart with a variable resolution. Moreover, the
user can browse the tweets in tabular form while filtering the results using a time frame
and a full-text search.

Even though the application is centered on monitoring Twitter, it can be modified to
be able to handle any online community with an API. Not too many adaptations would
be necessary to implement that modification. Basically, just the data source has to be
changed. Maybe one also would like to rename some classes like Tweet to Message.
However, Twitter is the only community providing comfortable API access to its public
stream right now. For this reason, such generalizations have not been implemented in
this thesis.

5.2 Conclusion and Outlook

To conclude the performance investigation it is worth mentioning that current methods
often discard other algorithms which actually perform on par with them. Moreover,
various preprocessing techniques are claimed to increase accuracy. Since these claims
are rarely backed with significance tests and experimental results, one should not simply
believe them. The best method acquired in this thesis performs on par with most current
methods even though it has been discarded by the majority of researchers. However,
methods using hand crafted feature vectors outperform it significantly. As a result,
handcrafted features are an interesting topic to be looked at in future work regarding
Twitter Sentiment Analysis. One further interesting project could be the extension
of the data set. It would be very interesting to see how classifiers trained only with
hand labeled data perform. To be able to do this, a reasonable amount of hand labeled
tweets needs to be available. Maybe so called crowd sourcing could be harnessed, which
denotes the process of exposing an experiment publicly to the internet to acquire results.
Since unknown people are less trustworthy in general, one would have to increase the
number of validations. For example, only tweets could be taken into account where at
least three labelers agreed on the sentiment.

The realtime tracking application provides an architectural example on which the im-
plementation of such a platform for productive usage can be based. Once the tools have
been brought in line, the actual coding effort is not very large. However, there is still
room for improvements. For example, one could imagine various additional analysis
steps being performed on the data. One possible step would be to analyze the content
of the tweets automatically and present the user with a list of positive and negative
aspects regarding the entities. The frequent occurrence of the phrase customer support
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in negative tweets about a company, for example, may be a hint that the customer
support is not working as intended. Another possible extension would be the automatic
discovery of additional relevant keywords for the entity. The keywords given by the
user could be treated as a seed set of keywords. Looking at the resulting tweets, the
system may be able to determine which other keywords are relevant for the entity and
could suggest these to the user.

All in all, this thesis provides a high quality data set for Twitter Sentiment Analysis,
invalidates common prejudices regarding classifiers, features and preprocessing, and it
finally illustrates an architecture for realtime sentiment tracking using the public twitter
stream.
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