

Fig. 5.17. Mapping the two bits 1 of T_l to bits 1 of S

immediately right of the $(6nb - 9n)^{\text{th}}$ bit 0. Since already 3n bits 0 of S have been omitted and right of the $6n(b-1)^{\text{th}}$ bit 0 of S' there are further 3n bits 0, we know that again at least 3n bits 0 of S' are omitted when embedding T_l into S. Since T_l has $15n^2 + 3n$ bits 0, S' has $6n^2 + 3n$ bits 0, and 6n bits 0 of S are not used when embedding T_l into S, we know that the remaining suffix of T_l must be embedded into S''. Thus S'' contains at least $6n + 9n^2$ bits 0. Denote the exact number of bits 0 in S'' by $p + 9n^2$ with some number $p \ge 6n$. Since each of the strings A_i and S' contain the same number $6n^2 + 3n$ of bits 0 we know that all of the strings B_j must be embedded into S''. By Lemma 5.20 we know that S'' must contain at least $(9n^2 + 1)/(p + 1)$ many bits 1. Thus S'' has length at least $p + 9n^2 + (9n^2 + 1)/(p + 1)$. Since $K = 15n^2 + 10n + k$ was the length of S and S' contained $6n^2 + 3n$ bits 0 and at least n bits 1, we conversely know that the length of S'' can be at most $9n^2 + 6n + k$. This results in the following inequality which we lead to a contradiction (using $k \le n$) by a sequence of transformation steps:

$$p + 9n^{2} + \frac{9n^{2} + 1}{p+1} \le 9n^{2} + 6n + k \le 9n^{2} + 7n$$

$$\Leftrightarrow p + \frac{9n^{2} + 1}{p+1} \le 7n .$$
(i)

Now we show

$$6n + \frac{9n^2 + 1}{6n + 1} \le p + \frac{9n^2 + 1}{p + 1} \tag{ii}$$

by the following equivalence transformations.