

Fig. 5.17. Mapping the two bits 1 of T_{l} to bits 1 of S
immediately right of the $(6 n b-9 n)^{\text {th }}$ bit 0 . Since already $3 n$ bits 0 of S have been omitted and right of the $6 n(b-1)^{\text {th }}$ bit 0 of S^{\prime} there are further $3 n$ bits 0 , we know that again at least $3 n$ bits 0 of S^{\prime} are omitted when embedding T_{l} into S. Since T_{l} has $15 n^{2}+3 n$ bits $0, S^{\prime}$ has $6 n^{2}+3 n$ bits 0 , and $6 n$ bits 0 of S are not used when embedding T_{l} into S, we know that the remaining suffix of T_{l} must be embedded into $S^{\prime \prime}$. Thus $S^{\prime \prime}$ contains at least $6 n+9 n^{2}$ bits 0 . Denote the exact number of bits 0 in $S^{\prime \prime}$ by $p+9 n^{2}$ with some number $p \geq 6 n$. Since each of the strings A_{i} and S^{\prime} contain the same number $6 n^{2}+3 n$ of bits 0 we know that all of the strings B_{j} must be embedded into $S^{\prime \prime}$. By Lemma 5.20 we know that $S^{\prime \prime}$ must contain at least $\left(9 n^{2}+1\right) /(p+1)$ many bits 1 . Thus $S^{\prime \prime}$ has length at least $p+9 n^{2}+\left(9 n^{2}+1\right) /(p+1)$. Since $K=15 n^{2}+10 n+k$ was the length of S and S^{\prime} contained $6 n^{2}+3 n$ bits 0 and at least n bits 1, we conversely know that the length of $S^{\prime \prime}$ can be at most $9 n^{2}+6 n+k$. This results in the following inequality which we lead to a contradiction (using $k \leq n$) by a sequence of transformation steps:

$$
\begin{align*}
& p+9 n^{2}+\frac{9 n^{2}+1}{p+1} \leq 9 n^{2}+6 n+k \leq 9 n^{2}+7 n \\
\Leftrightarrow & p+\frac{9 n^{2}+1}{p+1} \leq 7 n \tag{i}
\end{align*}
$$

Now we show

$$
\begin{equation*}
6 n+\frac{9 n^{2}+1}{6 n+1} \leq p+\frac{9 n^{2}+1}{p+1} \tag{ii}
\end{equation*}
$$

by the following equivalence transformations.

