References

1
Adler, I., Erera, A.L., Hochbaum, D.S., Olinick, E.V. (2002) Baseball, optimization, and the world wide web, Interfaces 32, 12-22.

2
Adriaen, M., Custers, N., Vanden Berghe, G. (2003) An agent based metaheuristic for the traveling tournament problem, Working Paper, KaHo Sint-Lieven, Gent, Belgium.

3
Aggoun, A., Vazacopoulos, A. (2004) Solving sports scheduling and timetabling problems with constraint programming, in: S. Butenko, J. Gil-Lafuente and P.M. Pardalos (eds.), Economics, Management and Optimization in Sports, Springer, 243-264.

4
Alarcón, F., Duran, G., Guajardo, M. (2014) Referee assignment in the Chilean football league using integer programming and patterns, International Transactions in Operational Research 21, 415-438.

5
Alarcón, F., Duran, G., Guajardo, M., Miranda, J., Munoz, H., Ramirez, L., Ramirez, M., Saure, D., Siebert, M., Souyris, S., Weintraub, A., Wolf-Yadlin, R., Zamoranoa, G. (2017) Operations Research transforms the scheduling of Chilean soccer leagues and South American world cup qualifiers, Interfaces 47, 52-69.

6
Anagnostopoulos, A., Michel, L., van Hentenryck, P., Vergados, Y. (2003) A simulated annealing approach to the traveling tournament problem, Proceedings CPAIOR'03, Montreal.

7
Anagnostopoulos, A., Michel, L., van Hentenryck, P., Vergados, Y. (2006) A simulated annealing approach to the traveling tournament problem, Journal of Scheduling 9, 177-193.

8
Anderson, I. (1997) Combinatorial Designs and Tournaments, Oxford Lecture Series in Mathematics and Its Applications.

9
Anderson, I. (1999) Balancing carry-over effects in tournaments, in: Combinatorial designs and their applications, Chapman & Hall/CRC Res. Notes Math., 403, Boca Raton, FL, 1-16.

10
Anderson, I., Bailey, R.A. (1997) Completeness properties of conjugates of Latin squares based on groups, and an application to bipartite tournaments, Bulletin of the Institute of Combinatorics and its Applications 21, 95-99.

11
Anderson, I., Ferguson, C. (2004) Training schedules balanced for carryover effects, Bulletin of the Institute of Combinatorics and its Applications 40, 5-12.

12
Andreu, R., Corominas, A. (1989) SUCCESS92: a DSS for scheduling the olympic games, Interfaces 19, 1-12.

13
Araújo, A., Boeres, M.C., Rebello, V.E., Ribeiro, C.C., Urrutia, S. (2007) Exploring grid implementations of parallel cooperative metaheuristics: A case study for the mirrored traveling tournament problem, in: K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl (eds.), Metaheuristics: Progress in Complex Systems Optimization, Springer, 297-322.

14
Armstrong, J., Willis, R.J. (1993) Scheduling the cricket World Cup – a case-study, Journal of the Operational Research Society 44, 1067-1072.

15
Atan, T., Çavdaroğlu, B. (2018) Minimization of rest mismatches in round robin tournaments, Computers and Operations Research 99, 78-89.

16
Ball, B.C., Webster, D.B. (1977) Optimal scheduling for even-numbered team athletic conferences, AIIE Transactions 9, 161-169.

17
Bar-Noy, A., Moody, D. (2006) A tiling approach for fast implementation of the traveling tournament problem, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 367-369.

18
Bartsch, T. (2001) Sportligaplanung – Ein Decision Support System zur Spielplanerstellung (in German), Deutscher Universitätsverlag, Wiesbaden.

19
Bartsch, T., Drexl, A. (2001) Fussball und Operations Research – Attraktive Spielpläne aus dem Computer (in German), OR News 13, 10-14.

20
Bartsch, T., Drexl, A. (2006) Fussballbundesliga-Spielpläne aus dem Computer (in German), OR News Sonderausgabe, 125-129.

21
Bartsch, T., Drexl, A., Kröger, S. (2006) Scheduling the professional soccer leagues of Austria and Germany, Computers and Operations Research 33, 1907-1937.

22
Bean, J.C., Birge, J.R. (1980) Reducing travelling costs and player fatigue in the national basketball association, Interfaces 10, 98-102.

23
Beintema, M.B., Bonn, J.T., Fitzgerald, R.W., Yucas, J.L. (1998) Orderings of finite fields and balanced tournaments, Ars Combinatoria 49, 41-48.

24
Benoist, T., Laburthe, F., Rottembourg, B. (2001) Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems, Proceedings CPAIOR'01, Wye College (Imperial College), Ashford, Kent UK.

25
Bernholt, T., Gülich, A. (2000) Anwendung von Komplexitätstheorie und effizienten Algorithmen auf die Fussballbundesliga (in German), Diplomarbeit, Universität Dortmund.

26
Bernholt, T., Gülich, A., Hofmeister, T., Schmitt, N., Wegener, I. (2002) Komplexitätstheorie, effiziente Algorithmen und die Bundesliga (in German), Informatik Spektrum 16, 488-502.

27
Bhattacharyya, R. (2016) Complexity of the unconstrained traveling tournament problem, Operations Research Letters 44, 649-654.

28
Birge, J.R. (2004) Scheduling a professional sports league in Microsoft Excel: Showing students the value of good modeling and solution techniques, INFORMS Transactions on Education 5.

29
Blest, D.C., Fitzgerald, D.G. (1988) Scheduling sports competitions with a given distribution of times, Discrete Applied Mathematics 22, 9-19.

30
Bonomo, F., Cardemil, A., Duran, G., Marenco, J., Saban, D. (2012) An application of the traveling tournament problem: the Argentine volleyball league, Interfaces 42, 245-259.

31
Brandao, F., Pedroso, J.P. (2014) A complete search method for the relaxed traveling tournament problem, EURO Journal on Computational Optimization, 2, 77-86.

32
Briskorn, D. (2006) Scheduling sport leagues using branch-and-price, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 367-369.

33
Briskorn, D. (2007) Sport leagues scheduling: models, combinatorial properties, and optimization algorithms, Ph.D. thesis, Christian-Albrechts-Universität Kiel, Lecture Notes in Economics and Mathematical Systems, Vol. 603, Springer.

34
Briskorn, D. (2008) Feasibility of home-away-pattern sets for round robin tournaments, Operations Research Letters 36, 283-284.

35
Briskorn, D. (2009) Combinatorial properties of strength groups in round robin tournaments, European Journal of Operational Research 192, 744-754.

36
Briskorn, D. (2009) A branching scheme for minimum cost tournaments with regard to real world constraints, Report 643, Institut für Betriebswirtschaftslehre, Universität Kiel.

37
Briskorn, D., Drexl, A. (2009) A branch-and-price algorithm for scheduling sport leagues, Journal of the Operational Research Society 60, 84-93.

38
Briskorn, D., Drexl, A. (2009) IP models for round robin tournaments, Computers and Operations Research 36, 837-852.

39
Briskorn, D., Drexl, A. (2009) A branching scheme for finding cost-minimal round robin tournaments, European Journal of Operational Research 197, 68-76.

40
Briskorn, D., Drexl, A., Spieksma, F.C.R. (2010) Round tobin tournaments and three index assignments, 4OR 8, 365-374.

41
Briskorn, D., Horbach, A. (2012) A Lagrangian approach for minimum cost single round robin tournaments, Computers and Operations Research 39, 718-727.

42
Briskorn, D., Knust, S. (2010) Constructing fair sports league schedules with regard to strength groups, Discrete Applied Mathematics 158, 123-135.

43
Brouwer, A.E., Post, G., Woeginger, G.J. (2008) Tight bounds for break minimization, Journal of Combinatorial Theory (A) 115, 1065-1068.

44
Buiteveld, B., van Holland, E., Post, G., Smit, D. (2014) Round-robin tournaments with homogenous rounds, Annals of Operations Research 218, 115-128.

45
Burke, E.K., Werra, D. de, Landa Silva, J.D., Raess, C. (2004) Applying heuristic methods to schedule sports competitions on multiple venues, Proceedings PATAT 2004, Pittsburgh, USA, 441-444.

46
Burrows, W., Tuffley, C. (2015) Maximising common fixtures in a round robin tournament with two divisions, Australasian Journal of Combinatorics 63, 153-169.

47
Cain, W.O. (1977) The computer-aided heuristic approach used to schedule the major league baseball clubs, in: S.P. Ladany and R.E. Machol (eds.), Optimal Strategies in Sports, North Holland, Amsterdam, 33-41.

48
Campbell, R.T., Chen, D.-S. (1976) A minimum distance basketball scheduling problem, in: R.E. Machol, S.P. Ladany and D.G. Morrison (eds.), Management Science in Sports, 15-25.

49
Carlsson, M., Johansson, M., Larson, J. (2017) Scheduling double round-robin tournaments with divisional play using constraint programming, European Journal of Operational Research 259, 1180-1190.

50
Carvalho, M.A.M. de, Loreno , L.A.N. (2012) New models for the mirrored traveling tournament problem, Computers and Industrial Engineering 63, 1089-1095.

51
Çavdaroğlu, B., Atan, T. (2020) Determining matchdays in sports league schedules to minimize rest differences, Operations Research Letters 48, 209-216.

52
Çavdaroğlu, B., Atan, T. (2022) Integrated break and carryover effect minimization, Journal of Scheduling 25, 705-719.

53
Cechlarova, K., Potpinkova, E., Schlotter, I. (2016) Refining the complexity of the sports elimination problem, Discrete Applied Mathematics 199, 172-186.

54
Chandrasekharan, R.C., Toffolo, T.A.M., Wauters, T. (2019) Analysis of a constructive matheuristic for the traveling umpire problem, Journal of Quantitative Analysis in Sports 15, 41-57.

55
Cheung, K.K.H. (2008) Solving mirrored traveling tournament problem benchmark instances with eight teams, Discrete Optimization 5, 138-143.

56
Cheung, K.K.H. (2009) A Benders approach for computing lower bounds for the mirrored traveling tournament problem, Discrete Optimization 6, 189-196.

57
Cocchi, G., Galligari, A., Nicolino, F.P., Piccialli, V., Schoen, F., Sciandrone, M. (2018) Scheduling the Italian National Volleyball Tournament, Interfaces 48, 271-284.

58
Colbourn, C.J. (1983) Embedding partial Steiner triple systems is NP-complete, Journal of Combinatorial Theory (A) 35, 100-105.

59
Colbourn, C.J. (1984) The complexity of completing partial Latin squares, Discrete Applied Mathematics 8, 25-30.

60
Colbourn, C.J., Dinitz, J.H. (2006) Handbook of Combinatorial Designs, 2nd edition, CRC Press.

61
Corriveau, J. (1988) Enumeration of balanced tournament designs, Ars Combinatoria 25, 93-105.

62
Costa, D. (1995) An evolutionary tabu search algorithm and the NHL scheduling problem, INFOR 33, 161-178.

63
Costa, F.N., Urrutia, S., Ribeiro, C.C. (2012) An ILS heuristic for the traveling tournament problem with predefined venues, Annals of Operations Research 194, 137-150.

64
Cotta, C., Dotu, I., Fernandez, A.J., van Hentenryck, P. (2006) Scheduling social golfers with memetic evolutionary programming, Lecture Notes in Computer Science 4030, Springer, 150-161.

65
Craig, S., While, L, Barone, L. (2009) Scheduling for the National Hockey League using a multi-objective evolutionary algorithm, Lecture Notes in Artificial Intelligence 5866, Springer, 381-390.

66
Crauwels, H., Van Oudheusden, D. (2003) Ant colony optimization and local improvement, Workshop of Real-Life Applications of Metaheuristics, Antwerp, Belgium.

67
Davari, M., Goossens, D., Beliën, J., Lambers, R., Spieksma, F.C.R. (2020) The multi-league sports scheduling problem, or how to schedule thousands of matches, Operations Research Letters 48, 180-187.

68
Dejonghe, T. (2004) Restructuring the Belgian professional football league: a location-allocation solution, Tijdschrift voor Economische en Sociale Geografie 95, 73-88.

69
Della Croce, F., Tadei, R., Asioli, P.S. (1999) Scheduling a round robin tennis tournament under courts and players availability constraints, Annals of Operations Research 92, 349-361.

70
Della Croce, F., Oliveri, D. (2006) Scheduling the Italian Football League: an ILP-based approach, Computers and Operations Research 33, 1963-1974.

71
Di Gaspero, L., Schaerf, A. (2007) A composite-neighborhood tabu search approach to the traveling tournament problem, Journal of Heuristics 13, 189-207.

72
Dinitz, J.H. (2004) Designing schedules for leagues and tournaments, Talk at Graph Theory Day 48, November 13, 2004.

73
Dinitz, J.H., Dinitz, M. (2005) Enumeration of balanced tournament designs on 10 points, Journal of Combinatorial Mathematics and Combinatorial Computing 52, 51-64.

74
Dinitz, J.H., Froncek, D. (2000) Scheduling the XFL, Congressus Numerantium 147, 5-15.

75
Dinitz, J.H., Froncek, D., Lamken, E.R. , Wallis, W.D. (2006) Scheduling a tournament, in: C.J. Colbourn, J.H. Dinitz (eds.), Handbook of Combinatorial Designs, CRC Press, [60].

76
Dinitz, J.H., Ling, A.C.H. (2001) The existence of referee squares, Discrete Mathematics 232, 109-112.

77
Dinitz, J.H., Stinson, D.R. (2005) On assigning referees to tournament schedules, Bulletin of the Institute of Combinatorics and its Applications 44, 22-28.

78
Dotu, I., van Hentenryck, P. (2005) Scheduling social golfers locally, Lecture Notes in Computer Science 3524, Springer, 155-167.

79
Drexl, A., Knust, S. (2007) Sports league scheduling: graph- and resource-based models, Omega 35, 465-471.

80
Duarte, A.R., Ribeiro, C.C., Urrutia, S. (2007) A hybrid ILS heuristic to the referee assignment problem with an embedded MIP strategy, Lecture Notes in Computer Science 4771, Springer, 82-95.

81
Duarte, A.R., Ribeiro, C.C., Urrutia, S., Haeusler, E.H. (2007) Referee assignment in sports leagues, Lecture Notes in Computer Science 3867, Springer, 158-173.

82
Duran, G., Duran, S., Marenco, J., Mascialino, F., Rey, P.A. (2019) Scheduling Argentina's professional basketball leagues: A variation on the relaxed travelling tournament problem, European Journal of Operational Research 275, 1126-1138.

83
Duran, G., Guajardo, M., Lopez, A., Marenco, J., Zamoranoa, G. (2021) Scheduling multiple sports leagues with travel distance fairness: An application to Argentinean youth football, INFORMS Journal on Applied Analytics 51, 136-149.

84
Duran, G., Guajardo, M., Miranda, J., Saure, D., Souyris, S., Weintraub, A., Wolf, R. (2007) Scheduling the Chilean soccer league by integer programming, Interfaces 37, 539-552.

85
Duran, G., Guajardo, M., Saure, D. (2017) Scheduling the South American Qualifiers to the 2018 FIFA World Cup by integer programming, European Journal of Operational Research 262, 1109-1115.

86
Duran, G., Guajardo, M., Weintraub, A., Wolf, R. (2009) OR & Soccer: Scheduling the Chilean league using mathematical programming, OR/MS Today 36, 42-47.

87
Duran, G., Guajardo, M., Wolf, R. (2012) Operations research techniques for scheduling Chile's second division soccer league, Interfaces 42, 273-285.

88
Duran, G., Noronha, T.F., Ribeiro, C.C., Souyris, S., Weintraub, A. (2006) Branch-and-cut for a real-life highly constrained soccer tournament scheduling problem, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 398-401.

89
Easton, K. (2002) Using integer programming and constraint programming to solve sports scheduling problems, Ph.D. thesis, Georgia Institute of Technology, Atlanta.

90
Easton, K., Nemhauser, G., Trick, M. (2001) The travelling tournament problem: description and benchmarks, in: Proceedings CP'01, Lecture Notes in Computer Science 2239, Springer, 580-585.

91
Easton, K., Nemhauser, G., Trick, M. (2003) Solving the travelling tournament problem: a combined integer programming and constraint programming approach, in: E. Burke and P. De Causmaecker (eds.), PATAT 2002, Lecture Notes in Computer Science 2740, Springer, 100-109.

92
Easton, K., Nemhauser, G., Trick, M. (2004) Sports scheduling, in: J.T. Leung (ed.): Handbook of Scheduling, CRC Press, 52.1-52.19.

93
Easton, T., Parker, R.G. (2001) On completing latin squares, Discrete Applied Mathematics 113, 167-181.

94
Elf, M., Jünger, M., Rinaldi, G. (2003) Minimizing breaks by maximizing cuts, Operations Research Letters 31, 343-349.

95
Evans, J.R. (1988) A microcomputer-based decision support system for scheduling umpires in the American baseball league, Interfaces 18, 42-51.

96
Evans, J.R., Hebert, J.E., Deckro, R.F. (1984) Play ball: the scheduling of sports officials, Perspectives in Computing 4, 18-29.

97
Farmer, A., Smith, J.S., Miller, L.T. (2007) Scheduling umpire crews for professional tennis tournaments, Interfaces 37, 187-196.

98
Ferland, J.A., Fleurent, C. (1991) Computer aided scheduling for a sport league, INFOR 29, 14-25.

99
Fiallos, J., Perez, J., Sabillon, F., Licona, M. (2010) Scheduling soccer league of Honduras using integer programming, in: A. Johnson and J. Miller (eds.), Proceedings of the 2010 Industrial Engineering Research Conference, San Carlos, 2010.

100
Flatberg, T., Nilssen, E., Stlevik, M. (2009) Scheduling the topmost football leagues of Norway, Abstract 23rd EURO conference, Bonn, 240.

101
Finizio, N.J. (1993) Tournament designs balanced with respect to several bias categories, Bulletin of the Institute of Combinatorics and its Applications 9, 69-95.

102
Fleurent, C., Ferland, J.A. (1993) Allocating games for the NHL using integer programming, Operations Research 41, 649-654.

103
Fonseca, G.H., Toffolo, T.A. (2022) A fix-and-optimize heuristic for the ITC2021 sports timetabling problem, Journal of Scheduling 25, 273–286.

104
Franek, F., Froncek, D., Rosa, A. (2001) Imbalance in tournament designs, Australasian Journal of Combinatorics 23, 237-251.

105
Froncek, D., Meszka, M. (2003) Round robin tournaments with one bye and no breaks in home-away patterns are unique, in: Proceedings of the 1st International Conference on Multidisciplinary Scheduling: Theory and Applications (MISTA'03), Nottingham, UK, 331-340.

106
Froncek, D. (2001) Scheduling the Czech national basketball league, Congressus Numerantium 153, 5-24.

107
Froncek, D. (2010) Scheduling a tournament, in: Gallian, J.A. (ed.), Mathematics and Sports, Dolciani Mathematical Expositions 43, The Mathematical Association of America, 203-216.

108
Fujiwara, N., Imahori, S., Matsui, T., Miyashiro, R. (2007) Constructive algorithms for the constant distance traveling tournament problem, Lecture Notes in Computer Science 3867, Springer, 135-146.

109
Garcia Tercero, L., Van Bulck, D., Nießen, F., Goossens, D. (2025) Minimal and fair waiting times for single-day sports tournaments with multiple fields, Operations Research Letters 61, 107300.

110
Geinoz, A., Ekim, T., Werra, D. de (2008) Construction of balanced sports schedules using partitions into subleagues, Operations Research Letters 36, 279-282.

111
Gelling, E.N., Odeh, R.E. (1974) On 1-factorizations of the complete graph and the relationship to round robin schedules, Congressus Numerantium 9, 213-221.

112
Goerigk, M., Westphal, S. (2016) A combined local search and integer programming approach to the traveling tournament problem, Annals of Operations Research 239, 343-354.

113
Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S. (2014) Solving the traveling tournament problem by packing three-vertex paths, 28th AAAI Conference on Artificial Intelligence, 2271-2277.

114
Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C. (1998) Randomization in backtrack search: exploiting heavy-tailed profiles for solving hard scheduling problems, in: Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems (AIPS98), Pittsburgh, PA.

115
Goossens, D. (2018) Optimization in sports league scheduling: Experiences from the Belgian Pro League soccer, International Conference on Operations Research and Enterprise Systems, Communications in Computer and Information Science 884, 3-19, Springer.

116
Goossens, D., Belien, J., Spieksma, F.C.R. (2012) Comparing league formats with respect to match importance in Belgian football, Annals of Operations Research 194, 223-240.

117
Goossens, D., Spieksma, F.C.R. (2009) Scheduling the Belgian soccer league, Interfaces 39, 109-118.

118
Goossens, D., Spieksma, F.C.R. (2011) Breaks, cuts, and patterns, Operations Research Letters 39, 428-432.

119
Goossens, D., Spieksma, F.C.R. (2012) Soccer schedules in Europe: an overview, Journal of Scheduling 15, 641-651.

120
Grabau, K. (2012) Softball scheduling as easy as 1-2-3 (strikes you're out) Interfaces 42, 310-319.

121
Griggs, T.S., Rosa, A. (1996) A tour of European soccer schedules, or testing the popularity of $GK_{2n}$, Bulletin of the Institute of Combinatorics and its Applications 18, 65-68.

122
Gschwind, T., Irnich, S. (2011) A note on symmetry reduction for circular traveling tournament problems, European Journal of Operational Research 210, 452-456.

123
Guajardo, M., Jörnsten, K. (2017) The stable tournament problem: matching sports schedules with preferences, Operations Research Letters 45, 461-466.

124
Guedes, A., Ribeiro, C.C. (2009) A hybrid heuristic for minimizing weighted carry-over effects in round robin tournaments, in: Proceedings of the 4th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA'09), Dublin.

125
Guedes, A., Ribeiro, C.C. (2011) A heuristic for minimizing weighted carry-over effects in round robin tournaments, Journal of Scheduling 14, 655-667.

126
Günneç, D., Demir, E. (2019) Fair fixture: Minimizing carry-over effects in football leagues, Journal of Industrial and Management Optimization 15, 1565-1577.

127
Gusfield, D., Martel, C. (2002) The structure and complexity of sports elimination numbers, Algorithmica 32, 73-86.

128
Hamiez, J.-P., Hao, J.-K. (2001) Solving the sports league scheduling problem with tabu search, in: A.Nareyek (ed.): Local Search for Planning and Scheduling, Lecture Notes in Artificial Intelligence 2148, Springer, 24-36.

129
Hamiez, J.-P., Hao, J.-K. (2004) A linear-time algorithm to solve the sports league scheduling problem (prob026 of CSPLib), Discrete Applied Mathematics 143, 252-265.

130
Hamiez, J.-P., Hao, J.-K. (2008) Using solution properties within an enumerative search to solve a sports league scheduling problem, Discrete Applied Mathematics 156, 1683-1693.

131
Hamiez, J.-P., Hao, J.-K. (2006) Sports league scheduling: enumerative search for prob026 from CSPLib, in: F.Benhamou (ed.): CP 2006, Lecture Notes in Computer Science 4204, Springer, 716-720.

132
Haselgrove, J., Leech, J. (1977) A tournament design problem, American Mathematical Monthly 84, 198-201.

133
Hausken, M., Andersson, K., Fagerholt, K., Flatberg, T. (2013) Scheduling the Norwegian football league, International Transactions in Operational Research 20, 59-77.

134
Henz, M. (1999) Constraint-based round robin tournament planning, in: D. De Schreye (ed.), Proceedings of the International Conference on Logic Programming, Las Cruces, New Mexico, MIT Press, 545-557.

135
Henz, M. (2000) Friar Tuck - A constraint-based tournament-scheduling tool, IEEE Intelligent Systems, 15, 5-7.

136
Henz, M. (2001) Scheduling a major college basketball conference-revisited, Operations Research 49, 163-168.

137
Henz, M. (2004) Playing with constraint programming and large neighborhood search for traveling tournaments, Proceedings PATAT 2004, Pittsburgh, USA.

138
Henz, M., Müller, T., Tan, T., Thiel, S. (2000) The pairing constraint for round robin tournament scheduling, Preprint, School of Computing at the National University of Singapore.

139
Henz, M., Müller, T., Thiel, S. (2004) Global constraints for round robin tournament scheduling, European Journal of Operational Research 153, 92-101.

140
Horbach, A. (2010) A combinatorial property of the maximum round robin tournament problem, Operations Research Letters 38, 121-122.

141
Horbach, A., Bartsch, T., Briskorn, D. (2012) Using a SAT-solver to schedule sports leagues, Journal of Scheduling 15, 117-125.

142
Horton, J.D. (1989) Hamilton path tournament designs, Ars Combinatoria 27, 69-74.

143
Hoshino, R., Kawarabayashi, K. (2011) The inter-league extension of the traveling tournament application to sports scheduling, 25th AAAI Conference on Artificial Intelligence, San Francisco, USA.

144
Hoshino, R., Kawarabayashi, K. (2011) The distance-optimal inter-league schedule for Japanese Pro Baseball, ICAPS 2011 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS), Freiburg, Germany.

145
Hoshino, R., Kawarabayashi, K. (2011) The multi-round balanced traveling tournament problem, Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS).

146
Hoshino, R., Kawarabayashi, K. (2011) A multi-round generalization of the traveling tournament problem and its application to Japanese baseball, European Journal of Operational Research 215, 481-497.

147
Hoshino, R., Kawarabayashi, K. (2011) Scheduling bipartite tournaments to minimize total travel distance, Journal of Artificial Intelligence Research 42, 91-124.

148
Hoshino, R., Kawarabayashi, K. (2012) The linear distance traveling tournament problem, 26th AAAI Conference on Artificial Intelligence.

149
Hoshino, R., Kawarabayashi, K. (2012) Generating approximate solutions to the traveling tournament problem using a linear distance relaxation, Journal of Artificial Intelligence Research 45, 257-286.

150
Hoshino, R., Kawarabayashi, K. (2013) An approximation algorithm for the bipartite traveling tournament problem, Mathematics of Operations Research 38, 720-728.

151
Huang, H.-D., Yang, J.T., Shen, S., Horng, J.-T. (1999) An evolutionary strategy to solve sports scheduling problems, in: W. Banzhaf et al. (eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, Los Altos, CA.

152
Hwang, F.K. (1989) How to design round-robin schedules, in: D.Z. Du, H. Guoding (eds.), Combinatorics, Computing and Complexity, Math. Appl. (Chinese series) 1, Kluwer, 142-160.

153
Ikebe, Y.T., Tamura, A. (2008) On the existence of sports schedules with multiple venues, Discrete Applied Mathematics 156, 1694-1710.

154
Imahori, S., Matsui, T., Miyashiro, R. (2014) An approximation algorithm for the unconstrained traveling tournament problem, Annals of Operations Research 218, 237-247.

155
Irnich, S. (2010) A new branch-and-price algorithm for the traveling tournament problem, European Journal of Operational Research 204, 218-228.

156
Januario, T., Urrutia, S. (2016) A new neighborhood structure for round robin scheduling problems, Computers and Operations Research 70, 127-139.

157
Januario, T., Urrutia, S., Ribeiro, C.C., Werra, D. de (2016) Edge coloring: A natural model for sports scheduling, European Journal of Operational Research 254, 1-8.

158
Januario, T., Urrutia, S., Werra, D. de (2016) Sports scheduling search space connectivity: A riffle shuffle driven approach, Discrete Applied Mathematics 211, 113-120.

159
Jeong, H.M., Kim, S.W., Choi, Y., Kim, A.J., Eun, J., Kim, B.J. (2012) Traveling baseball players' problem in Korea, Journal of the Korean Physical Society 61, 484-492.

160
Keedwell, A.D. (2000) Construction, properties and application of finite neofields, Comment. Math. Univ. Carolinae 41, 283-297.

161
Kendall, G. (2008) Scheduling English football fixtures over holiday periods, Journal of the Operational Research Society 59, 743-755.

162
Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S. (2010) Scheduling in sports: An annotated bibliography, Computers and Operations Research 37, 1-19.

163
Kendall, G., Miserez, W., Vanden Berghe, G. (2006) A constructive heuristic for the traveling tournament problem, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 443-447.

164
Kendall, G., McCollum, B., Cruz, F.R., McMullan, P., While, L. (2013) Scheduling English football fixtures: consideration of two conflicting objectives, Hybrid Metaheuristics, Studies in Computational Intelligence 434, 369-385.

165
Kendall, G., Westphal, S. (2013) Sports Scheduling: Minimizing travel for English football supporters, Automated Scheduling and Planning, Studies in Computational Intelligence 505, 61-90.

166
Kern, W., Paulusma, D. (2001) The new FIFA rules are hard complexity aspects of sports competitions, Discrete Applied Mathematics 108, 317-323.

167
Kern, W., Paulusma, D. (2004) The computational complexity of the elimination problem in generalized sports competitions, Discrete Optimization 1, 205-214.

168
Khelifa, M., Boughaci, D. (2015) A variable neighborhood search method for solving the traveling tournaments problem, Electronic Notes in Discrete Mathematics 47, 157-164.

169
Kidd, M.P. (2010) A tabu-search for minimising the carry-over effects value of a round-robin tournament, ORiON 26, 125-141.

170
Kim, T. (2019) Optimal approach to game scheduling of multiple round-robin tournament: Korea professional baseball league in focus, Computers and Industrial Engineering 136, 95-105.

171
Kirkman, T.P. (1847) On a problem in combinations, Cambridge and Dublin Mathematics Journal 2,191-204.

172
Knust, S. (2008) Scheduling sports tournaments on a single court minimizing waiting times, Operations Research Letters 36, 471-476.

173
Knust, S. (2010) Scheduling non-professional table-tennis leagues, European Journal of Operational Research 200, 358-367.

174
Knust, S., Lücking, D. (2009) Minimizing costs in round robin tournaments with place constraints, Computers and Operations Research 36, 2937-2943.

175
Knust, S., Thaden, M. von (2006) Balanced home-away assignments, Dicrete Optimization 3, 354-365.

176
Ko, Y.D., Jung, S.H., Kim, S.H., Lee, S.W. (2018) Sustainable sport scheduling approach considering team equity for the Korean professional baseball league, Sustainability, 10, 429.

177
Kostuk, K.J. (1997) A decision support system for a large, multi-event tournament, INFOR 35, 183-195.

178
Kostuk, K.J., Willoughby, K.A. (2012) A decision support system for scheduling the Canadian football league, Interfaces 42, 286-295.

179
Kujansuu, E., Lindberg, T., Mäkinen, E. (1999) The stable roommates problem and chess tournament pairings, Divulgaciones Matematicas 7, 19-28.

180
Kyngäs, J., Nurmi, K., Kyngäs, N., Lilley, G., Salter, T. (2017) Scheduling the Australian Football League, Journal of the Operational Research Society 68, 973-982.

181
Lambrechts, E., Ficker, A.M., Goossens, D.R., Spieksma, F.C. (2018) Round-robin tournaments generated by the circle method have maximum cartexry-over, Mathematical Programming B 172, 277-302.

182
Lamken, E.R. (1990) Generalized balanced tournament designs, Transactions of the American Mathematical Society 318, 473-490.

183
Lamken, E.R. (1996) A few more partitioned balanced tournament designs, Ars Combinatoria 43, 121-134.

184
Lamken, E.R. (1997) The existence of partitioned generalized balanced tournament designs with block size 3, Designs, Codes and Cryptography 11, 37-71.

185
Lamken, E.R., Vanstone, S.A. (1985) The existence of factored balanced tournament designs, Ars Combinatoria 19, 157-160.

186
Lamken, E.R., Vanstone, S.A. (1987) The existence of partitioned balanced tournament designs, Annals of Discrete Mathematics 34, 339-352.

187
Lamken, E.R., Vanstone, S.A. (1988) Orthogonal resolutions in odd balanced tournament designs, Graphs and Combinatorics 4, 241-255.

188
Lamken, E.R., Vanstone, S.A. (1989) Balanced tournament designs and related topics, Discrete Mathematics 77, 159-176.

189
Larson, J., Johansson, M. (2014) Constructing schedules for sports leagues with divisional and round-robin tournaments, Journal of Quantitative Analysis in Sports 10, 119-129.

190
Lee, J.H., Lee, Y.H., Lee, Y.H. (2006) Mathematical modeling and tabu search heuristic for the traveling tournament problem, in: M.Gavrilova et al. (eds.): ICCSA 2006, Lecture Notes in Computer Science 3982, Springer, 875-884.

191
Lester, M.M. (2022) Pseudo-Boolean optimisation for RobinX sports timetabling, Journal of Scheduling 25, 287–299.

192
Lewis, R., Thompson. J. (2011) On the application of graph colouring techniques in round-robin sports scheduling, Computers and Operations Research 38, 190-204.

193
Lim, A., Zhang, X. (2003) Integer programming and simulated annealing for scheduling sports competition on multiple venues, Proceedings MIC 2003.

194
Lim, A., Rodrigues, B., Zhang, X. (2006) A simulated annealing and hill-climbing algorithm for the traveling tournament problem, European Journal of Operational Research 174, 1459-1478.

195
Lim, A., Rodrigues, B., Zhang, X. (2006) Scheduling sports competitions at multiple venues – revisited, European Journal of Operational Research 175, 171-186.

196
Liu, K., Löffler, S., Hofstedt, P. (2018) Solving the traveling tournament problem with predefined venues by parallel constraint programming, Lecture Notes in Artificial Intelligence 11308, 64-79.

197
Mancini, S., Isabello, A. (2014) Fair referee assignment for the Italian soccer serieA, Journal of Quantitative Analysis in Sports, 10, 153-160.

198
McAloon, K., Tretkoff, C., Wetzel, G. (1997) Sports league scheduling, in: Proceedings of the 3rd ILOG Optimization Suite International Users Conference, Paris.

199
Melo, R.A., Urrutia, S., Ribeiro, C.C. (2007) Scheduling single round robin tournaments with fixed venues, in: Proceedings of the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA'07), 431-438, Paris.

200
Melo, R.A., Urrutia, S., Ribeiro, C.C. (2009) The traveling tournament problem with predefined venues, Journal of Scheduling 12, 607-622.

201
Mendelsohn, E., Rosa, A. (1985) One-factorizations of the complete graph – a survey, Journal of Graph Theory 9, 43-65.

202
Mendelsohn, E., Rodney, P. (1994) The existence of court balanced tournament designs, Discrete Mathematics 133, 207-216.

203
Mitchell, J.E. (2000) Realignment in the national football league, Working Paper, Mathematical Sciences, Rensselaer Polytechnic Institute Troy, NY 12180.

204
Miyashiro, R., Iwasaki, H., Matsui, T. (2003) Characterizing feasible pattern sets with a minimum number of breaks, in: E. Burke and P. De Causmaecker (eds.), PATAT 2002, Lecture Notes in Computer Science 2740, Springer, 78-99.

205
Miyashiro, R., Matsui, T. (2005) A polynomial-time algorithm to find an equitable home-away assignment, Operations Research Letters 33, 235-241.

206
Miyashiro, R., Matsui, T. (2006) Semidefinite programming based approaches to the break minimization problem, Computers and Operations Research 33, 1975-1982.

207
Miyashiro, R., Matsui, T. (2006) Minimizing the carry-over effects value in a round-robin tournament, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 402-405.

208
Miyashiro, R., Imahori, S., Matsui, T. (2012) An approximation algorithm for the traveling tournament problem, Annals of Operations Research 194, 317-324.

209
Nemhauser, G.L., Trick, M.A. (1998) Scheduling a major college basketball conference, Operations Research 46, 1-8.

210
Noronha, T.F., Ribeiro, C.C., Duran, G., Souyris, S., Weintraub, A. (2007) A branch-and-cut algorithm for scheduling the highly-constrained Chilean soccer tournament, Lecture Notes in Computer Science 3867, Springer, 174-186.

211
Nowak, M., Epelman, M., Pollock, S.M. (2006) Assignment of swimmers to dual meet events, Computers and Operations Research 33, 1951-1962.

212
Nurmi, K., Goossens, D., Bartsch, T., Bonomo, F., Briskorn, D., Duran, G, Kyngäs, J., Marenco, J., Ribeiro, C., Spieksma, F.., Urrutia, S., Wolf, R. (2010) A framework for a highly constrained sports scheduling problem, Proceedings of the International Multi-Conference of Engineers and Computer Scientists, Volume III, Hong-Kong, 1991-1997
also
IAENG Transactions on Engineering Technologies, American Institute of Physics 5, 14-28.

213
Nurmi, K., Kyngäs, J., Goossens, D. (2011) Scheduling a triple round robin tournament for the Finnish national ice hockey league for players under 20, IEEE SSCI 2011 - CISched 2011: 2011 IEEE Symposium on Computational Intelligence in Scheduling, 46-53.

214
Nurmi, K., Kyngäs, J., Goossens, D. (2013) Scheduling a triple round robin tournament with minitournaments for the Finnish national youth ice hockey league, Journal of the Operational Research Society 65, 1770-1779.

215
Nurmi, K., Kyngäs, J., Goossens, D., Kyngäs, N. (2014) Scheduling a professional sports league using the PEAST algorithm, Lecture Notes in Engineering and Computer Science: International MultiConference of Engineers and Computer Scientists, Hong Kong, 1176-1182.

216
Oliveira, L. de, Souza, C.C. de, Yunes, T. (2014) Improved bounds for the traveling umpire problem: A stronger formulation and a relax-and-fix heuristic, European Journal of Operational Research 236, 592-600.

217
Oliveira, L. de, Souza, C.C. de, Yunes, T. (2016) Lower bounds for large traveling umpire instances: New valid inequalities and a branch-and-cut algorithm, Computers and Operations Research 72, 147-159.

218
Panton, D., Bryant, K., Schreuder, J. (2002) Optimisation tools for round-robin and partial round-robin sporting fixtures, Abstracts from the 6th Australian Conference on Mathematics & Computers in Sport, Bond University, Queensland, Australia.

219
Perron, L. (2005) Alternate modelling in sport scheduling, in: P. van Beek (ed.), CP 2005, Lecture Notes in Computer Science 3709, Springer, 797-801.

220
Post, G., Woeginger, G.J. (2006) Sports tournaments, home-away assignments, and the break minimization problem, Discrete Optimization 3, 165-173.

221
Premananda, I.G.A., Tjahyanto, A., Mukhlason, A. (2024) Efficient iterated local search based metaheuristic approach for solving sports timetabling problems of International Timetabling Competition 2021, Annals of Operations Research 343, 411-427.

222
Raack, C., Raymond, A., Schlechte, T., Werner, A. (2014) Standings in sports competitions using integer programming, Journal of Quantitative Analysis in Sports, 10, 131-137.

223
Rasmussen, R.V. (2008) Scheduling a triple round robin tournament for the best Danish soccer league, European Journal of Operational Research 185, 795-810.

224
Rasmussen, R.V., Trick, M.A. (2008) Round robin scheduling – a survey, European Journal of Operational Research 188, 617-636.

225
Rasmussen, R.V., Trick, M.A. (2007) A Benders approach for the constrained minimum break problem, European Journal of Operational Research 177, 198-213.

226
Rasmussen, R.V., Trick, M.A. (2009) The timetable constrained distance minimization problem, Annals of Operations Research 171, 45-59.

227
Recalde, D., Torres, R., Vaca, P. (2013) Scheduling the professional Ecuadorian football league by integer programming, Computers and Operations Research 40, 2478-2484.

228
Regin, J.-C. (2001) Minimization of the number of breaks in sports scheduling problems using constraint programming, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 57, 115-130.

229
Ribeiro, C.C. (2012) Sports scheduling: problems and applications, International Transactions in Operational Research 19, 201-226.

230
Ribeiro, C.C., Urrutia, S. (2005) An application of integer programming to playoff elimination in football championships, International Transactions in Operational Research 12, 375-386.

231
Ribeiro, C.C., Urrutia, S. (2004) OR on the ball: applications in sports scheduling and management, OR/MS Today 31, 50-54.

232
Ribeiro, C.C., Urrutia, S. (2006) Scheduling the Brazilian soccer championship, in: E. Burke and H. Rudova (eds.), PATAT 2006, Proceedings, 481-483.

233
Ribeiro, C.C., Urrutia, S. (2007) Scheduling the Brazilian soccer tournament with fairness and broadcast objectives, Lecture Notes in Computer Science 3867, Springer, 149-159.

234
Ribeiro, C.C., Urrutia, S. (2007) Heuristics for the mirrored traveling tournament problem, European Journal of Operational Research 179, 775-787.

235
Ribeiro, C.C., Urrutia, S. (2012) Scheduling the Brazilian soccer tournament: solution approach and practice, Interfaces 42, 260-272.

236
Robinson, L.W. (1991) Baseball playoff elimination: an application of linear programming, Operations Research Letters 10, 67-74.

237
Rodney, P. (1995) The existence of interval-balanced tournament designs, Journal of Combinatorial Mathematics and Combinatorial Computing 19, 161-170.

238
Rosa, A., Wallis, W. (1982) Premature sets of 1-factors or how not to schedule round robin tournaments, Discrete Applied Mathematics 4, 217-226.

239
Rosati, R.M., Petris, M., Di Gaspero, L., Schaerf, A. (2022) Multi-neighborhood simulated annealing for the sports timetabling competition ITC2021, Journal of Scheduling 25, 301–319.

240
Russell, K.G. (1980) Balancing carry-over effects in round robin tournaments, Biometrika 67, 127-131.

241
Russell, R.A., Leung, J.M. (1994) Devising a cost effective schedule for a baseball league, Operations Research 42, 614-625.

242
Russell, R.A., Urban, T.L. (2006) A constraint programming approach to the multiple-venue sport-scheduling problem, Computers and Operations Research 33, 1895-1906.

243
Russell, T., van Beek, P. (2012) A hybrid constraint programming and enumeration approach for solving NHL playoff qualification and elimination problems, European Journal of Operational Research 218, 819-828.

244
Sakaguchi, T., Ishizaki, S. (2005) A neural network model for sports scheduling problems with considering travel cost, Transactions of Information Processing Society of Japan 46, 103-110.

245
Saur, M.C., Starr, K., Husted, M., Newman, A.M. (2012) Scheduling softball series in the Rocky Mountain athletic conference, Interfaces 42, 296-309.

246
Schaerf, A. (1999) Scheduling sport tournaments using constraint logic programming, Constraints 4, 43-65.

247
Schauz, U. (2016) The tournament scheduling problem with absences, European Journal of Operational Research 254, 746-754.

248
Schellenberg, P.J., van Rees, G.H.J., Vanstone, S.A. (1977) The existence of balanced tournament designs, Ars Combinatoria 3, 303-318.

249
Schönberger, J., Mattfeld, D.C., Kopfer, H. (2000) Automated timetable generation for rounds of a table-tennis league, Proceedings of the 2000 Congress on Evolutionary Computation, 277-284.

250
Schönberger, J., Mattfeld, D.C., Kopfer, H. (2004) Memetic algorithm timetabling for non-commercial sport leagues, European Journal of Operational Research 153, 102-116.

251
Schreuder, J.A.M. (1980) Constructing timetables for sport competitions, Mathematical Programming Study 13, 58-67.

252
Schreuder, J.A.M. (1992) Combinatorial aspects of construction of competition dutch professional football leagues, Discrete Applied Mathematics 35, 301-312.

253
Schreuder, J.A.M. (1993) Construction of fixture lists for professional football leagues, Ph.D. thesis, University of Strathclyde, Glasgow.

254
Straley, T.H. (1983) Scheduling designs for a league tournament, Ars Combinatoria 15, 193-200.

255
Su, L.-H., Chiu, Y., Cheng, T.C.E. (2013) Sports tournament scheduling to determine the required number of venues subject to the minimum timeslots under given formats, Computers and Industrial Engineering 65, 226-232.

256
Suksompong, W. (2016) Scheduling asynchronous round-robin tournaments, Operations Research Letters 44, 96-100.

257
Suzuka, A., Miyashiro, R., Yoshise, A., Matsui, T. (2005) Semidefinite programming based approaches to home-away assignment problems in sports scheduling, The First International Conference on Algorithmic Applications in Management (AAIM 2005), Lecture Notes in Computer Science 3521, Springer, 95-103.

258
Suzuka, A., Miyashiro, R., Yoshise, A., Matsui, T. (2006) Dependent randomized rounding to the home-away assignment problem in sports scheduling, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E89-A, 1407-1416.

259
Suzuka, A., Miyashiro, R., Yoshise, A., Matsui, T. (2007) The home-away assignment problems and break minimization/maximization problems in sports scheduling, Pacific Journal of Optimization 3, 113-133.

260
Suzuka, A., Saruwatari, Y., Yoshise, A. (2002) Solving sports scheduling problems using network structure, Proceedings PATAT 2002, KaHo Sint-Lieven, Gent, Belgium.

261
Tajbakhsh, A., Eshghi, K., Shamsi, A. (2012) A hybrid PSO-SA algorithm for the travelling tournament problem, European Journal of Industrial Engineering 6, 2-25.

262
Thielen, C., Westphal, S. (2011) Complexity of the traveling tournament problem, Theoretical Computer Science 412, 345-351.

263
Thielen, C., Westphal, S. (2012) Approximation algorithm for TTP(2), Mathematical Methods of Operations Research 76, 1-20.

264
Toffolo, T., Christiaens, J., Spieksma, F.C.R., Vanden Berghe, G. (2019) The sport teams grouping problem, Annals of Operations Research 275, 223-243.

265
Toffolo, T., Wauters, T., Van Malderen, S., Vanden Berghe, G. (2016) Branch-and-bound with decomposition-based lower bounds for the traveling umpire problem, European Journal of Operational Research 250, 737-744.

266
Trick, M.A. (2001) A schedule-then-break approach to sports timetabling, in: E. Burke and W. Erben (eds.), PATAT 2000, Lecture Notes in Computer Science 2079, Springer, 242-252.

267
Trick, M.A. (2003) Integer and constraint programming approaches for round-robin tournament scheduling, in: E. Burke and P. De Causmaecker (eds.), PATAT 2002, Lecture Notes in Computer Science 2740, Springer, 63-77.

268
Trick, M.A. (2004) Using sports scheduling to teach integer programming, INFORMS Transactions on Education 5, 10-17.

269
Trick, M.A., Yildiz, H. (2007) Bender's cuts guided large neighborhood search for the traveling umpire problem, Lecture Notes in Computer Science 4510, 332-345.

270
Trick, M.A., Yildiz, H. (2011) Benders' cuts guided large neighborhood search for the traveling umpire problem, Naval Research Logistics 58, 771-781.

271
Trick, M.A., Yildiz, H. (2012) Locally optimized crossover for the traveling umpire problem, European Journal of Operational Research 216, 286-292.

272
Trick, M.A., Yildiz, H., Yunes, T. (2012) Scheduling major league baseball umpires and the traveling umpire problem, Interfaces 42, 232-244.

273
Triska, M., Musliu, N. (2012) An effective greedy heuristic for the social golfer problem, Annals of Operations Research 194, 413-425.

274
Triska, M., Musliu, N. (2012) An improved SAT formulation for the social golfer problem, Annals of Operations Research 194, 427-438.

275
Urban, T.L., Russell, R.A. (2003) Scheduling sports competitions on multiple venues, European Journal of Operational Research 148, 302-311.

276
Urrutia, S., Ribeiro, C.C. (2006) Maximizing breaks and bounding solutions to the mirrored traveling tournament problem, Discrete Applied Mathematics 154, 1932-1938.

277
Urrutia, S., Ribeiro, C.C., Melo, R.A. (2007) A new lower bound to the traveling tournament problem, in: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2007), Honolulu, 15-18.

278
Urrutia, S., Werra, D. de, Januario, T. (2021) Recoloring subgraphs of $K_{2n}$ for sports scheduling, Theoretical Computer Science 877, 36–45.

279
Uthus, D.C., Riddle, P.J., Guesgen, H.W. (2008) Ant colony optimization and the single round robin maximum value problem, Lecture Notes in Computer Science 5217, ANTS 2008, Springer, 243-250.

280
Uthus, D.C., Riddle, P.J., Guesgen, H.W. (2009) An ant colony optimization approach to the traveling tournament problem, Proceedings GECCO 2009, Montreal.

281
Uthus, D.C., Riddle, P.J., Guesgen, H.W. (2009) DFS* and the traveling tournament problem, Lecture Notes in Computer Science 5547, CPAIOR 2009, Springer, 279-293.

282
Uthus, D.C., Riddle, P.J., Guesgen, H.W. (2012) Solving the traveling tournament problem with iterative-deepening A$^\star$, Journal of Scheduling 15, 601-614.

283
Van Bulck, D., Goossens, D., Spieksma, F.C.R. (2019) Scheduling a non-professional indoor football league: a tabu search based approach, Annals of Operations Research 275, 715-730.

284
Van Bulck, D., Goossens, D. (2020) Handling fairness issues in time-relaxed tournaments with availability constraints, Computers and Operations Research 115, 104856.

285
Van Bulck, D., Goossens, D. (2020) On the complexity of pattern feasibility problems in time-relaxed sports timetabling, Operations Research Letters 48, 452-459.

286
Van Bulck, D., Goossens, D., Schönberger, J., Guajardo, M. (2020) RobinX: A three-field classification and unified data format for round-robin sports timetabling, European Journal of Operational Research 280, 568-580.

287
Van Bulck, D., Goossens, D. (2022) Optimizing rest times and differences in games played: an iterative two-phase approach, Journal of Scheduling 25, 261-271.

288
Van Bulck, D., Goossens, D. (2023) First-break-heuristically-schedule: Constructing highly-constrained sports timetables, Operations Research Letters 51 (2023) 326-331.

289
Van Bulck, D., Goossens, D. (2023) A traditional Benders’ approach to sports timetabling, European Journal of Operational Research 307, 813–826.

290
Van Bulck, D., Goossens, D. (2023) The international timetabling competition on sports timetabling (ITC2021), European Journal of Operational Research 308, 1249–1267.

291
Van Bulck, D., Goossens, D., Clarner, J.-P., Dimitsas, A., Fonseca, G.H.G., Lamas-Fernandez, C., Lester, M.M., Pedersen, J., Phillips, A.E., Rosati, R.M. (2024) Which algorithm to select in sports timetabling? European Journal of Operational Research 318, 575–591.

292
Van Doornmalen, J., Hojny, C., Lambers, R., Spieksma, F.C.R. (2023) Integer programming models for round robin tournaments, European Journal of Operational Research 310, 24-33.

293
Van Voorhis, T.V. (2002) Highly constrained college basketball scheduling, Journal of the Operational Research Society 53, 603-609.

294
Van Voorhis, T.V. (2005) College basketball scheduling with travel swings, Computers and Industrial Engineering 48, 163-172.

295
van't Hof, P., Post, G., Briskorn, D. (2010) Constructing fair round robin tournaments with a minimum number of breaks, Operations Research Letters 38, 592-596.

296
Wallis, W.D. (1983) A tournament problem, Journal of the Mathematical Society, Series B 24, 289-291.

297
Walser, J.P. (1999) Integer optimization by local search – a domain-independent approach, Lecture Notes in Artificial Intelligence 1637, Springer, Berlin-Heidelberg.

298
Wang, W., Xue, F., Mitsui, T., Shang, Z., Shigeno, M. (2024) Carry-over effect values minimization under circle method and binary factorization based on Jaya algorithm, Proceedings of the 8th International Conference on Control Engineering and Artificial Intelligence, 44-51.

299
Wauters, T., Van Malderen, S., Vanden Berghe, G. (2014) Decomposition and local search based methods for the traveling umpire problem, European Journal of Operational Research 238, 886-898.

300
Wayne, K. (2001) A new property and a faster algorithm for baseball elimination, SIAM Journal on Discrete Mathematics 14, 223-229.

301
Weert, A. van, Schreuder, J.A.M. (1998) Construction of basic match schedules for sports competitions by using graph theory, in: E. Burke and M. Carter (eds.), PATAT 1997, Lecture Notes in Computer Science 1408, Springer, 201-210.

302
Werners, B., Wülfing, T. (2007) Optimierung von Spielplänen am Beispiel der Fussball-Bundesliga-Saison 2006/07, Zeitschrift für Planung & Unternehmenssteuerung 18, 207-221.

303
Werra, D. de (1980) Geography, games, and graphs, Discrete Applied Mathematics 2, 327-337.

304
Werra, D. de (1981) Scheduling in sports, in: P. Hansen (ed.), Studies on Graphs and Discrete Programming, 381-395.

305
Werra, D. de (1982) Minimizing irregularities in sports schedules using graph theory, Discrete Applied Mathematics 4, 217-226.

306
Werra, D. de (1985) On the multiplication of divisions: the use of graphs for sports scheduling, Networks 15, 125-136.

307
Werra, D. de (1988) Some models of graphs for scheduling sports competitions, Discrete Applied Mathematics 21, 47-65.

308
Werra, D. de, Descombes, J.L., Masson, P. (1990) A constrained sports scheduling problem, Discrete Applied Mathematics 26, 41-49.

309
Werra, D. de, Ekim, T., Raess, C. (2006) Construction of sports schedules with multiple venues, Discrete Applied Mathematics 154, 47-58.

310
Westphal, S. (2014) Scheduling the German basketball league. Interfaces, 44, 498-508.

311
Westphal, S., Noparlik, K. (2014) A 5.875-approximation for the traveling tournament problem, Annals of Operations Research 218, 347-360.

312
While, L., Kendall, G. (2014) Scheduling the English football league with a multi-objective evolutionary algorithm. International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science 8672, Springer, 842-851.

313
Willis, R.J., Terrill, B.J. (1994) Scheduling the Australian state cricket season using simulated annealing, Journal of the Operational Research Society 45, 276-280.

314
Wright, M. (1991) Scheduling English cricket umpires, Journal of the Operational Research Society 42, 447-452.

315
Wright, M. (1992) A fair allocation of county cricket opponents, Journal of the Operational Research Society 43, 195-201.

316
Wright, M. (1994) Timetabling county cricket fixtures using a form of tabu search, Journal of the Operational Research Society 45, 758-770.

317
Wright, M. (2005) Scheduling fixtures for New Zealand cricket, IMA Journal of Management Mathematics 16, 99-112.

318
Wright, M. (2006) Scheduling fixtures for basketball New Zealand, Computers and Operations Research 33, 1875-1893.

319
Wright, M. (2009) 50 years of OR in sport, Journal of the Operational Research Society 60, 161-168.

320
Wright, M. (2018) Scheduling an amateur cricket league over a nine-year period, Journal of the Operational Research Society, 69, 1854-1862.

321
Xiao, M., Kou, S. (2016) An improved approximation algorithm for the traveling tournament problem with maximum trip length two, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 89:1-89:14,

322
Xue, L., Luo, Z., Lim, A. (2015) Two exact algorithms for the traveling umpire problem, European Journal of Operational Research 243, 932-943.

323
Yang, J.T., Huang, H.-D., Yang, J., Horng, J.-T. (1999) Devising a cost effective baseball scheduling by evolutionary algorithms, Working Paper, Department of Computer Science and Information Engineering, National Central University, Chungli 32054, Taiwan.

324
Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T. (2009) An improved approximation algorithm for the traveling tournament problem, Lecture Notes in Computer Science 5878, Springer, 679-688.

325
Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T. (2011) An improved approximation algorithm for the traveling tournament problem, Algorithmica 61, 1077-1091.

326
Yavuz, M., Inan, U.H., Figlali, A. (2008) Fair referee assignments for professional football leagues, Computers and Operations Research 35, 2937-2951.

327
Yi, X., Goossens, D., Nobibon, F.T. (2020) Proactive and reactive strategies for football league timetabling, European Journal of Operational Research 282, 772-785.

328
Yi, X., Goossens, D. (2023) Strategies for dealing with uncertainty in time-relaxed sports timetabling, Annals of Operations Research 320, 473–492.

329
Zeng, L., Mizuno, S. (2012) On the separation in 2-period double round robin tournaments with minimum breaks, Computers and Operations Research 39, 1692-1700.

330
Zeng, L., Mizuno, S. (2013) Constructing fair single round robin tournaments regarding strength groups with a minimum number of breaks, Operations Research Letters 41, 506-510.

331
Zhao, J., Xiao, M. (2025) A 5-approximation algorithm for the traveling tournament problem, Annals of Operations Research 346, 2287–2305.